
 19/10/1994 Page 1

SELECTING TEST SEQUENCES FOR PARTIALLY-SPECIFIED

NONDETERMINISTIC FINITE STATE MACHINES1

Gang Luo, Alexandre Petrenko2 and Gregor v. Bochmann

Departement d'IRO, Universite de Montreal,

C.P. 6128, Succ.A, Montreal, P.Q., H3C 3J7, Canada

E-mail:{luo, petrenko, bochmann}@iro.umontreal.ca

Fax: (514) 343-5834

ABSTRACT In order to test the control portion of communication software, specifications are

usually first abstracted to state machines, then test cases are generated from the resulting machines.

The state machines obtained from the specification are often both partially-specified and

nondeterministic. We come out with a method of generating test suites for the software that is

modeled by partially-specified nondeterministic finite state machines (PNFSMs). On the basis of

intuitive notions, a conformance relation, called quasi-equivalence, is introduced for such machines,

which serves as a guide to test generation. Our method is also applicable to completely-specified

deterministic machines, partially-specified deterministic machines, and completely-specified

nondeterministic machines, which are typical classes of PNFSMs. When applied to such classes of

machines, this method usually yields smaller test suites with full fault coverage for each class of

machines than the existing methods for the same class which also provide full fault coverage. The

test suites generated by the method can be used to check a conformance relation between a

specification and its implementations.

KEYWORDS: Finite state machines, partially-specified nondeterministic finite state machines,

protocol conformance testing, protocol engineering, and software testing.

1 This work was supported by the IDACOM-NSERC-CWARC Industrial Research Chair on Communication
Protocols at the University of Montreal (Canada)

2 On leave from the Institute of Electronics and Computer Science, Riga, Latvia.

 19/10/1994 Page 2

1. INTRODUCTION

The testing phase represents a large effort within the common software development cycle. In the

area of communication software, systematic approaches have been developed for protocol

conformance testing [Rayn87, Boch89], and the selection of appropriate test suites [Fuji91, Pitt90,

Sidh89, Sari87, Sari84, Chow78]. These approaches can produce significant economic benefits

[Aho90, AT&T90]. Usually, the specifications of communication software are first abstracted to

state machines, then test cases are generated from the resulting machines [Lee91, Roug89]. A

considerable amount of work has been done to generate test cases for completely-specified,

deterministic finite state machines (FSMs) [Fuji91, Sidh89, Chow78, Gone70, Vuon89, Sabn85,

Nait81, Vasi73]. However, the specifications of communication software often contain both

nondeterministic and partially (or incompletely) specified behavior. For example, all the three major

specification languages for communication software, LOTOS [Bolo87, ISO8807], ESTELLE

[Budk87, ISO9074] and SDL [Beli89] support the description of nondeterminism (SDL will

support nondeterminism in the near future [SDL91]); and ESTELLE and LOTOS can describe

partially-specified behavior. Therefore, the state machines abstracted from the specifications may be

both partially-specified and nondeterministic. There is a practical need for testing nondeterministic

models [Witt92]; in particular, communication protocols, when tested under the ISO remote testing

architecture, are often modeled as partially-specified and nondeterministic finite state machines.

Some work on test generation for nondeterministic models has been done in the context of LOTOS

[Trip91, Pitt90, Brin88] and finite labeled transition systems [Fuji91b, Fuji91c], but they are not

applicable to testing nondeterministic state machines where every transition is associated with an

input/output pair. Furthermore, several results have been reported on test generation for either

partially-specified deterministic machines [Petr91, Evtu89], or completely-specified nondeterministic

machines [Luo89, Trip92, Kloo92]. The methods given in [Luo89, Trip92, Kloo92] are all based

on the generalization of unique I/O sequences [Sabn85], even when applied to FSMs, a specific

 19/10/1994 Page 3

class of NFSMs, they still cannot guarantee full fault coverage, although full fault coverage for

FSMs can be assured by many other methods. The reason is the same as pointed out in [Voun89].

Therefore, they have limited fault detection power. Furthermore, no work on test generation for

both partially-specified and nondeterministic finite machines has been reported.

We study in this paper test generation for the finite state machines that could be both partially-

specified and nondeterministic, guided by pre-defined conformance relations.

In the area of protocol conformance testing, the meaning of conformance between a specification and

the valid implementations is specified either by informal description, or by precisely-defined

conformance relations. Usually, the formally-defined conformance relations are preferable since

they provide a means to direct the development of test generation methods and a basis to analyze the

validity of the methods. For completely-specified deterministic finite state machines (FSMs),

partially-specified deterministic finite state machines (PFSMs), and completely-specified

nondeterministic finite state machines (NFSMs), there are commonly-defined conformance relations

in the literature [Fuji91, Chow78, Vasi73, Star72, Gill62]. However, no conformance relation has

been reported for partially-specified nondeterministic finite state machines (PNFSMs), except for

some general study on the specialization of object behaviors and requirement specifications

[Boch92].

In Section 2, after formally defining PNFSMs and several related notations, we introduce a

conformance relation, called quasi-equivalence, for PNFSMs. The relation is defined in terms of

input/output traces in accordance with black-box testing strategy. When the relation is applied to

FSMs, NFSMs and PFSMs, which are specific cases of PNFSMs, it coincides to the corresponding

conformance relations given in the literature. We also define several concepts which are related to

testing.

 19/10/1994 Page 4

Guided by the conformance relations, in Section 3, we come out with a method for generating test

cases from PNFSMs. We first transform a PNFSM to an equivalent one that has a lower degree of

nondeterminism, called observable PNFSM (OPNFSM). The OPNFSMs have the property that a

state and an input/output pair uniquely determine the next state, while a state and an input alone do

not necessarily determine a unique next state and an output. We then generate test suites from the

resulting OPNFSM by a method which we call Harmonized State Identification method (HSI-

method). As an example, we finally apply the method to generate a test suite for a communication

protocol, called Inres [MUTE92], within the remote testing architecture.

In Section 4, we compare our method with other test generation methods, on the basis of

applicability, fault coverage and the size of test suites. The main advantage of our method over the

other methods is its broadest applicability with full fault coverage.

We conclude in Section 5 by discussing some extreme case of the length of test cases and the upper

bound of the size of test suites, for partial machines. We also discuss the application of the method

to generating test cases for specifications written in SDL or ESTELLE.

2. NOTATIONS AND ABSTRACT TESTING FRAMEWORK

We first give in this section the definition of PNFSMs, then present conformance relations for

PNFSMs under the black-box testing strategy (where implementations are assumed to be black-

boxes), and finally define several concepts which are related to testing.

2.1 Partially-specified nondeterministic finite state machines (PNFSMs)

We first define PNFSMs in a traditional form similar to that given in [Star72] for NFSMs. For the

convenience of presentation, we then introduce additional notations for PNFSMs similar to that for

 19/10/1994 Page 5

labeled transition systems [Brin88, Fuji91b, Fuji91c]; we also define several specific classes of

PNFSMs.

DEFINITION Partially-specified Nondeterministic Finite State Machine :

A Partially-specified Nondeterministic Finite State Machine (PNFSM) is defined as a 5-tuple

(St, Li, Lo, h, S0) where:

(1) St is a finite set of states, St={ S0, S1, ..., Sn-1} .

(2) Li is a finite set of inputs.

(3) Lo is a finite set of outputs.

(4) h is a behavior function:

 h : d => powerset(St × Lo) \{ ∅} where

 (i) d⁄St 6 Li (PNFSM becomes completely specified if d=St 6 Li);

 (ii) ∅ denotes the empty set.

Let P, Q∈St, a∈Li and b∈Lo. We write P-a/b->Q to denote (Q, b)∈h(P,a); P-a/b->Q is called a

transition from P to Q with label a /b.

(5) S0 is the initial state, which is in St.

We assume that a "reliable" reset input r is available in any implementation of a PNFSM such that

upon receiving r in any state the implementation returns to the initial state.

We often use in the following the term "partial machine" to refer to a PNFSM, which may be

deterministic or not. A partial machine can be represented by a directed graph in which the nodes

are the states and the directed edges are transitions linking the states. Figure 1 shows an example of

such a machine.

 19/10/1994 Page 6

Figure 1. An example of a partial NFSM

Li = { a, b, c }

Lo = {u, v, w, x, y, z}

the initial state is S1.

S1

S2S3

a/u

a/v

a/v

c/w

b/z

a/w

a/w
c/x

b/y

a/v
b/y

c/w

For a PNFSM, if no two outgoing transitions from the same state have the same input, then the

machine is deterministic; and we call it a partial FSM (PFSM).

For the convenience of the presentation, we also introduce in Table 1 several notations.

 Table 1. Notation for PNFSMs
 notation meaning
 L Li 6 Lo, a set of input/output pairs; u denotes such a pair
 ε ε is the empty sequence.
 L* set of sequences over L; x denotes such a sequence.
 Note that ε∈L*

 P\-u-> For P, Q ∈ St, not(∃Q(P-u->Q))

 P=ε=>Q P=Q
 P=a/b=>Q P-a/b->Q
 P=x=>Q ∃P1, ..., Pk-1∈St (P=P0=u1=>P1...=uk=>Pk=Q)

 where u1,...,uk∈L, and x=u1...uk

 P=x=> ∃Q∈St (P=x=>Q)
 Tr(P) Tr(P)={ x | P=x=>}
 xin For x∈L*, x in is an input sequence obtained by deleting all outputs in x

 (note that xin∈Li*)

 Vin For V⁄L*, V in={ xin | x∈V }
 Trin(P) Trin(P)={ xin | P=x=> } ,
 (note that Trin(P)=Li* for each state P of completely-specified NFSMs)

DEFINITION Initially connected PNFSM:

 19/10/1994 Page 7

Given a PNFSM S (St, Li, Lo, h, S0), S is said to be initially connected iff

 ∀Si∈St ∃x∈L* (S0=x=>Si).

In initially connected PNFSMs, every state is reachable from the initial state.

Without loss of generality, we assume that all PNFSMs considered in the rest of the paper are

initially connected. If a given PNFSM S is not initially connected, we may consider only such a

submachine which is a portion of S consisting of all states and transitions that are reachable from the

initial state of S. The unreachable states and transitions of machines do not affect the behavior of the

machines.

We now define several specific classes of PNFSMs, which are useful concepts for test generation.

We first define so-called observable PNFSMs, a concept originally described in [Star72] for

completely specified machines, which represents a restricted form of nondeterminism.

DEFINITION Observable PNFSMs (OPNFSMs) :

A PNFSM is said to be observable if for every state S ∈St, and every input/output pair a/b∈L, there

is at most one transition; that is, S-a/b->S1 & S-a/b->S2 ==> S1=S2.

As an example, Figure 1 shows an OPNFSM. OPNFSMs are a subclass of partial machines. In

observable machines, a state and an input/output pair can uniquely determine at most one next state.

However, an OPNFSM may still be nondeterministic in the sense that a state and an input cannot

determine a unique next state and a unique output. We note that all deterministic machines are

observable.

DEFINITION: Reduced PNFSMs :

An PNFSM is reduced iff ∀Si, Sj∈ St (i≠j ==> Tr(Si)≠Tr(Sj)).

 19/10/1994 Page 8

A PNFSM is reduced if and only if none of its states accept the same set of input/output sequences.

DEFINITION: Distinguishable states:

Given a pair of states Si and Sj, Si and Sj are distinguishable, written Si— Sj, iff

 ∃x∈Tr(Si)&Tr(Sj) (xin∈Trin(Si)∩Trin(Sj))

where Tr(Si)&Tr(Sj)=(Tr(Si)∪Tr(Sj)) \(Tr(Si)∩Tr(Sj)).

If a pair of states are not distinguishable, we say that they are indistinguishable.

Two states are distinguishable if and only if there is an input/output sequence x such that x can be

accepted by only one of the two states but the input sequence xin can be accepted by both of them.

DEFINITION: Minimal PNFSMs:

A PNFSM is minimal iff ∀Si, Sj∈St (i≠j ==> Si—Sj).

A PNFSM is minimal if and only if every pair of states are distinguishable. A minimal PNFSM is

reduced, but a reduced PNFSM is not necessarily minimal. Given a minimal machine S, each state is

distinguishable from all other states; however, this is not necessarily true for a reduced machine. If

we consider a completely specified machine, then a reduced machine is also minimal. The

OPNFSM shown in Figure 1 is reduced, but not minimal.

We also need the following concepts for presenting our method.

DEFINITION: prefix set pref(V) for a given set of sequences:

Given a set of sequences V∈Li* ,

 pref(V)={ t1 | t2∈Li* & t1.t2 ∈V & t1≠ε} where t1.t2 is the concatenation of t1 with t2.

 19/10/1994 Page 9

DEFINITION: Concatenation of sets of i/o sequences or input sequences:

Assuming V1, V2 ⁄L* (or V1, V2 ⁄Li*), the concatenation of sets, written ".", is defined as

follows:

 V1.V2 = { t1.t2 | t1∈ V1 & t2 ∈ V2} where t1.t2 is the concatenation of t1 with t2.

We write Vn = V.Vn-1 for n > 1 and V1 = V.

2.2. Conformance relations for PNFSMs

Before any study on how to generate test suites for PNFSMs, the following question must first be

answered: under the black-box testing strategy, what kind of conformance relation between a

specification and the corresponding implementation is expected to hold ? There are several

conformance relations defined in the literature for FSMs, PFSMs and NFSMs. However, no

conformance relation has been reported for PNFSMs.

Generalizing the conformance relations for FSMs, PFSMs and NFSMs on the basis of intuitive

notions, we will define in this section conformance relations for PNFSMs in terms of the relations

between their initial states.

For (completely-specified, deterministic) FSMs, there is a widely-accepted conformance relation,

called equivalence, (see, e.g., [Fuji91, Chow78, Vasi73, Star72, Gill62]), which requires that a

specification and its implementation produce the same output sequence for every input sequence.

DEFINITION Equivalence:

The equivalence relation between two states P and Q in PNFSMs, written

 P≠Q, holds iff Tr(P) =Tr(Q)

Given two PNFSMs S and I with their initial states S0 and I0, we write S≠I iff S0≠I0.

 19/10/1994 Page 10

We say that an implementation I is equivalent to its specification S if and only if S≠I. The above

definition is similar to that in [Fuji91, Chow78, Vasi73, Gill62], but it can also be applied to

PNFSMs. The above relation is an equivalence relation since it is reflective, transitive and

symmetric. It corresponds to the equivalent relation between NFSMs given in [Star72].

We now explain the intuitive notions for defining a conformance relation for partial machines. We

say that a state machine is partial if its behavior function is not defined for all state/input

combinations. The behavior function of a partial machine may not be completely specified for certain

reasons. There are two basic interpretations for such an undefined state/input combination, namely

"don't care" and "forbidden".

In the case of "don't care" interpretation, an undefined state/input combination means that the

specification allows any further behavior of an implementation starting from a certain state under a

certain input. Since an implementation can always be represented by a completely specified machine

it actually completes a given partially specified machine. In other words, a partial machine represents

a set of completely specified machines, and its implementation is required to conform to one of these

machines.

In the second interpretation, an undefined state/input combination means that the input in the

combination cannot be applied to the state, i.e., a transition cannot be executed, due to limitations

imposed by the environment. For example, it is impossible to send data to a protocol machine via a

connection until it has accepted this connection. Undefined "forbidden" state/input combinations will

never occur in real executions. Thus, any method for executable test suite derivation should not

consider these combinations.

 19/10/1994 Page 11

Both interpretations require that the external behavior of an implementation is equal to that of its

specification only for all those input sequences that can be accepted by a specification, instead of all

possible sequences. For PFSMs (a specific class of PNFSMs), a conformance relation, called

quasi-equivalence, was presented in [Petr91, Star72, Gill62], which is in accordance with the above

intuitive notions. The relation requires that, for every input sequence that can be accepted by a

specification, the specification and its implementation produce the same output sequence.

Guided by the same intuitive notions, we generalize the quasi-equivalence to PNFSMs by requiring

that, for every input sequence that can be accepted by a specification, the specification and its

implementation produce the same set of output sequences. We formally define the generalized

quasi-equivalence as follows.

DEFINITION Quasi-equivalence:

The quasi-equivalence relation between two states P and Q in PNFSMs, written

 P≤quasi Q, holds iff

(a) Tr(P)⁄Tr(Q), and

(b) ∀ x∈Tr(Q) (xin∈Trin(P) ==> x∈Tr(P))

Given two PNFSMs S and I with their initial states S0 and I0, we write S≤quasiI (i.e.,

implementation I is quasi-equivalent to its specification) iff S0≤quasiI0.

In some situations [Boch92, Cern92], a weaker conformance relation, called trace-inclusion, is

needed, which requires that the implementations accept all the input/output sequences that can be

accepted by their specifications.

DEFINITION Trace-inclusion:

The trace-inclusion relation between two states P and Q in PNFSMs, written

 P≤traceQ, holds iff Tr(P)⁄Tr(Q),

 19/10/1994 Page 12

Given two PNFSMs S and I with their initial states S0 and I0, we write S≤traceI iff S0≤traceI0.

It is easy to prove that the quasi-equivalence and trace-inclusion relation are reflective and transitive.

Therefore, they are preorders.

We present in the following the relations among the above-defined conformance relations .

THEOREM 1: Given two PNFSMs S and I, assuming that they have common Li and Lo, we

have the following statements:

(i) S≠I <==> S≤traceI & I≤traceS

(ii) S≠I <==> S≤quasiI & I≤quasiS

(iii) S≤quasiI ==> S≤traceI

(iv) if S and I are (completely-specified) NFSMs, then S≤quasiI <==> S≠I

(v) if S and I are (deterministic) PFSMs, then S≤quasiI <==> S≤traceI

(vi) if S and I are (completely-specified, deterministic) FSMs, then

 S≤quasiI <==> S≠I <==> S≤traceI.

The above theorem is evident from the corresponding definitions.

It is well-known that any nondeterministic finite automaton where each transition is associated with

a single symbol (not with an I/O pair) can be modeled by an equivalent deterministic automaton

[Hopc79]. However, nondeterministic finite state machines, where each transition is associated with

an I/O pair, cannot be modeled by equivalent deterministic finite state machines. For example, in a

NFSM with S0-a/b-> and S0-a/c->, we have { a/b, a/c} ⁄Tr(S0). On the other hand, no

deterministic FSM has { a/b, a/c} ⁄Tr(S0). Therefore, nondeterministic finite state machines, in

general, cannot be transformed to equivalent deterministic finite state machines for test generation.

 19/10/1994 Page 13

2.3. Definitions related to testing

We define in this section several concepts which are related to tesing nondeterministic finite state

machines.

DEFINITION Test case and test suite :

For a given PNFSM, a sequence t of a finite length is a test case if t∈Trin(S0).

A test suite is a finite set of test cases.

DEFINITION : Trace-inclusion with respect to a given input set.

The trace-inclusion relation between two states P and Q, with respect to a given input set ∏⁄Li*,

written P≤∏Q, holds iff (V(Tr(P))⁄Tr(Q)

 where V={ x| x∈L* & x in∈∏(Trin(P)(Trin(Q)} .

Given two PNFSMs S and I with their initial states S0 and I0, we write S≤∏I iff S0≤∏I0.

We note: S≤traceI iff ∀∏⁄Li* (S≤∏I).

DEFINITION : Equivalence with respect to a given input set:

The equivalence relation between two states P and Q, with respect to a given input set ∏⁄Li*,

written

 P=∏Q, holds iff Q≤∏P & P≤∏Q

Given two PNFSMs S and I with their initial states S0 and I0, we write S=∏I iff S0=∏I0.

The equivalence relation with respect to a given input set ∏ requires that, for every input sequence

in ∏ that can be accepted by both a specification and its implementation, the specification and its

implementation produce the same set of output sequences.

 19/10/1994 Page 14

The relation is reflective and symmetric but not transitive. We note: (i) S≠I iff ∀∏⁄Li*

(S=∏I), and (ii) S≤quasiI iff ∀∏⁄Trin(S) (S=∏I).

In order to test nondeterministic implementations, one usually make a so-called complete-testing

assumption: it is possible, by applying a given input sequence to a given implementation a finite of

number of times, to exercise all possible execution paths of the implementation which are traversed

by the input sequence [Fuji91b, Fuji91c, Luo89]. Without such an assumption, no test suites can

guarantee full fault coverage (in terms of conformance relations) for nondeterministic

implementations. In practice, for an implementation and a given input sequence, the probability that

not all possible corresponding execution paths are exercised at least once, may be reduced to close to

zero by applying the input sequence a sufficiently large number of times.

3. TEST GENERATION

We present in this section a test generation method for PNFSMs, called HSI-method. The test suites

generated by the HSI-method can be used to test PNFSM implementations against their

specifications with respect to the quasi-equivalence or trace-inclusion relations.

We first describe in Section 3.1 how to generate test cases for OPNFSMs, a specific class of partial

machines. We then give in Section 3.2 an algorithm for transforming an arbitrary PNFSM to a trace-

equivalent OPNFSM. Incorporating methods given in Sections 3.1 and 3.2, we can generate test

cases for arbitraty PNFSMs. As an example, in Section 3.3, we apply the method to generate a

test suite for a communication protocol, called Inres.

3.1. Test generation for OPNFSMs

 19/10/1994 Page 15

We first define several key concepts for presenting our method, then give an algorithm of generating

test suites, and finally present a theorem for establishing the validity of the algorithm.

DEFINITION: Characterization set W:

Given an OPNFSM, a characterization set is a minimal set W ⁄Li* such that:

∀Si, Sj∈St (Si—Sj ==> ∃x∈Tr(Si)&Tr(Sj) (xin∈Trin(Si)∩Trin(Sj)∩W)).

The above definition is generalized from the concept of the characterization set for FSMs given in

[Chow78] to PNFSMs. The W-set is used to identify states in a given machine. An algorithm of

generating characterization sets is given in Appendix II.

We find, however, that it is not neccesary to use the whole characterization set for state

identification. We only use the subsets of this set, called harmonized state identification sets, for

state identification.

DEFINITION: Harmonized state identification sets { D0, D1, ..., Dn-1} :

Given an OPNFSM with n states, { D0, D1, ..., Dn-1} is a tuple of harmonized state identification

sets if, for i=0, 1, ..., n-1, Di is a minimal set such that

(i) Di⁄Trin(Si)∩pref(W), and

(ii) for j=0, 1, ..., n-1, Si—Sj, ==> ∃x∈Tr(Si)&Tr(Sj) (xin∈pref(Di)∩pref(Dj)).

For the OPNFSM shown in Figure 1, D1=D2=D3={ a.b } . An algorithm of generating harmonized

state identification sets is given in Appendix II.

DEFINITION: subscripts(A) for a given state set:

For A⁄St, subscripts(A) is a string of integers i1, i2, ..., ik,

 where i1< i2< ...<ik and A={ Si1, Si2, ..., Sik }.

 19/10/1994 Page 16

Given two sets of states A and B, we say that the subscripts of A is smaller than that of B if

subscripts(A) precedes subscripts(B) in lexicographic order. The notation subscripts(A) for a given

set of states A is needed for defining a so-called maximal set of pairwise-distinguishable states f(Si)

for a given state Si for OPNFSMs. The states in a given set are pairwise-distinguishable if and only

if every pair of states in the set are distinguishable. A maximal set of pairwise-distinguishable states

is a set such that it is not contained in any other set of pairwise-distinguishable states. A maximal set

of pairwise-distinguishable states f(Si) for a given state Si is the set with the smallest subscript

among the maximal sets of pairwise-distinguishable states that contains Si, which is formally defined

as follows.

DEFINITION: Maximal set of pairwise-distinguishable states f(Si) for a given state Si:

Given an OPNFSM and a state Si∈St, f(Si) is defined as a set A⁄St such that:

(i) Si∈A, and

(ii) ∀Sk,Sj∈A (k≠j ==> Sk—Sj), and

(iii) there is no B⁄St such that

 (i') Si∈B, and

 (ii') ∀Sk, Sj∈B (k≠j ==> Sk—Sj), and

 (iii') |B| > |A| or

|B|=|A|, and subscripts(B) precedes subscripts(A) in lexicographic order.

Given a minimal machine, for every state Si, we have f(Si)=St. For a given OPNFSM, we denote

the number of all different maximal sets of pairwise-distinguishable states as fuzziness degree δ, as

defined below.

DEFINITION: Fuzziness degree δ for a given OPNFSM:

Given an OPNFSM, we have δ = |{ f(Si) | Si∈St}| .

 19/10/1994 Page 17

According the above definition, every state Si has only one maximal set of pairwise-distinguishable

states f(Si). Therefore, it is easy to see that 1≤δ≤|St|, and δ=1 for any minimal OPNFSM. A

fuzziness degree δ of a given OPNFSM influences the size of test suites and lengths of test cases.

DEFINITION : Prime machine:

For a given PNFSM S (St, Li, Lo, hS, S0), the prime machine of S is a reduced (not necessarily

minimal) OPNFSM M (StM, Li, Lo, hM, M0) such that S≠M.

We give in the following the test generation algorithm, which we call Harmonized State Identification

method (HSI-method). This algorithm requires that the user previously estimates an upper bound

on the number of states in the prime machine of the given NFSM implementation.

ALGORITHM 1: Test generation.

Input : A specification S in the form of an (arbitrary) OPNFSM (St, Li, Lo, h, S0), and the upper

bound m on the number of states in the prime machine of the given NFSM implementation.

Output : A test suite ∏.

Step 1: Determine the fuzziness degree δ of S.

Step 2: Let the number of states in S be n (n≤δm). Find a set of harmonized state identification

sets { D0, D1, ..., Dn-1} from S.

Step 3: Construct a minimal set Q⁄Li* such that: ∀Si∈St ∃x∈L* (x in∈Q & S0=x=>Si).

Step 4: Construct a test suite ∏ such that:

 ∏= ∪
S0=x=>Si &

 xin∈Q.({ε} ∪Li...∪Li δm-n+1)

{ xin} .Di .

In the above algorithm, the given specification is not required to be reduced. However, a much

smaller test suite will be obtained if we use its reduced form.

 19/10/1994 Page 18

As an example, we derive a test suite ∏ for the PNFSM given in Figure 1 as follows:

 Q={ ε, a, a.b} , D1 =D2
 =D3

 ={ a.b} , f(S1)={ S1,S3} , f(S2)=f(S3)={ S2,S3} , δ = 2.

Assume that the prime machines of implementations do not have more than 2 states (i.e., m=2);

then, we have n≤δm. We note that a test suite could be reduced by deleting each test case that is a

prefix of another test case. The final test suite is as follows:

 ∏ = { a.a.a.b, a.a.b.a.b, a.a.c.a.b, a.b.a.a.b, a.c.a.a.b, a.c.b.a.b, a.c.c.a.b,
 a.b.a.a.a.b, a.b.a.b.a.b, a.b.a.c.a.b, a.b.b.a.a.b, a.b.b.b.a.b, a.b.b.c.a.b,
 a.b.c.a.a.b, a.b.c.b.a.b, a.b.c.c.a.b, a.c.a.b, a.b.b.a.b, a.b.c.a.b, a.a.a.a.b}

We note that a reset must be issued before the execution of each test case.

THEOREM 2: (Validity of the test generation method):

Consider a given specification S in the form of an OPNFSM, and any NFSM I. Suppose n≤δm

where n is the number of states in S, and m is the upper bound on the number of states in the prime

machine of I. Let ∏ be the test suite generated for S using Algorithm 1. We have the following:

 (i) S≤quasiI iff S=∏I; (ii) S≤traceI iff S≤∏I.

Proof : (i) follows from Lemmas given in Appendix I. We omit the proof of (ii) since it is similar

to the proof for (i).

As shown in Algorithm 1, test suites for minimal partial machines can be constructed in the same

way as for completely specified minimal machines since δ is equal to one for minimal machines.

However, if a partial machine has indistinguishable states, then the machine cannot be transformed

into its minimal form to generate test suite with respect to the quasi-equivalence relation. The reason

is that the transformation of a partial machine into a minimal form by merging states will result in the

appearance of new traces that are not defined in the original machine. In turn, this results in that

some valid implementations may not pass a test suite derived from the minimal form, and that some

 19/10/1994 Page 19

test cases in such a test suite may be not acceptable in the original machine. Therefore, partial

machines should not be transformed into minimal forms for test generation.

In practical application, state machines that represent implementations, are always completely

specified. Therefore, for a given OPNFSM specification S and a given test suite ∏, if the complete-

testing assumption is satisfied by a given implementation NFSM I, then the relations "I=∏S" and

"S≤∏I" can be checked by repeatedly applying every test case to I a sufficient number of times.

Thus, according to Theorem 2, the test suites generated by Algorithm 1 can be used to test NFSM

implementations against their specification with respect to the quasi-equivalence or trace-inclusion

relations.

3.2. Equivalent transformation to obtain OPNFSMs

We now present an algorithm to construct an equivalent OPNFSM from a given PNFSM.

Combined with this algorithm, the test generation method given in Section 3.1 can be used to

generate test cases for an arbitrary PNFSM.

ALGORITHM 2: Constructing an equivalent OPNFSM.

Input : A PNFSM S.

Output : An OPNFSM S'.

Step 1: Build a graph G consisting initially of a single unmarked node, labeled { S0 } .

Step 2: If there is no unmarked node in the resulting graph G, then stop; G represents the

OPNFSM S', and the node { S0} represents the initial state of S'. Otherwise,

(a) Find and mark an unmarked node M in G, where the label M⁄St ;

(b) For every u∈L, first construct M'={ P' | P∈M (P=u=> P')} . Then, if M' is not a node

label in the resulting graph G, create an unmarked node with label M' and a directed edge

from M to M' with label u; go to Step 2.

 19/10/1994 Page 20

The Figure 2 shows an example of using the above algorithm to construct an equivalent OPNFSM

from a given partial machine.

S0

S1

a/d

a/d b/e

b/d

S0&S1

S1

a/d

a/d
b/e

b/e
b/d

S0Li = { a, b }

Lo = { d, e }

the initial state is S0.
b/d

Figure 2. Transformation to obtain an equivalent OPNFSM

3.3. Test generation for the Inres protocol

As an application example of using the HSI-method to generate test suites, we consider the Inres

protocol (Initiator-responder protocol) from [MUTE92] which has already been used as a reference

in many publications. Under the ISO remote testing architecture, we construct a NFSM for the

system under test which consists of a Responder and a User, as shown in Figure 3. An FSM model

of the Responder can be easily constructed from the state tables [Kroo92] and is not presented in

this paper. The nondeterministic model shown in Figure 4 is assumed for the User. The user may

disconnect by sending IDISreq only in response to an ICONind or IDATind. We assume that there

is a certain control over the User's behavior in such a way that, during the test campaign, the User

executes each option sufficiently often.

 19/10/1994 Page 21

User

Responder

Medium Service

System under test

S

ICONind/ICONresp

ICONind/IDISreq

IDATind/no output
IDATind/IDISreq

Figure 3. Remote testing of Inres-responder Figure 4. User's behavior

Tester

The behavior of the system under test is described by the completely specified minimal ONFSM with

three states shown in Figure 5. Interpretation of inputs, outputs and states is given in Table 2.

Figure 5. NFSM for the system under test

S1

S2S3

a/u

a/v

a/v

c/w

b/z

a/w

a/w
c/x

b/y

a/v
b/y

c/w

b/t

c/t

the initial state is S1.

Table 2. Interpretation of inputs, outputs and states
Inputs: Li = { a,b,c} .
 a - "CR PDU", b - "DT_1 PDU", c - "DT_0 PDU";

Outputs: Lo = { t,u,v,w,x,y,z} .
 t - "no output", u - "DR PDU", v - "CC PDU", w - "AK_0 PDU",
 x - "AK_0 PDU followed by DR PDU", y - " AK_1 PDU",
 z - "AK_1 PDU followed by DR PDU".

States: St = { S1,S2,S3} .
 S1 - "disconnected" (initial state), S2 - "data transfer & dat_nr=1", S3 - "data transfer & dat_nr=0".

We derive a test suite ∏ as follows:

 19/10/1994 Page 22

 Q={ ε, a, a.b} , D1 =D2
 =D3

 ={ b} , δ = 1

Assuming that a prime machine of any implementation does not have more than 3 states (i.e., m=3),

the final test suite is ∏ = { a.a.b, a.b.a.b, a.b.b.b, a.b.c.b, a.c.b, b.b, c.b}.

4. COMPARISON WITH OTHER RELATED WORK

Since FSMs, NFSMs and PFSMs are specific classes of PNFSMs, the HSI-method can be applied

to them, to test the equivalence and quasi-equivalence relations, respectively (see Theorem 1). We

compare in this section our HSI-method for PNFSMs with the other test generation methods for

different machines [Fuji91, Vuon89, Sabn85, Nait81, Chow78, Vasi73, Petr91, Petr92, Trip92,

Kloo92, Luo89], which also require a "reliable" reset in the implementations (note, that simple

experiments or checking sequences do not use this assumption). The main advantage of the HSI-

method over the other test generation methods is its broader applicability with full fault coverage

(w.r.t. conformance relations), as shown in Figure 6.

Vuon89(UIOv), Fuji91(Wp),
Vasi73, Chow78(W), Petr92(FF)

Petr91

Luo89, Trip92, Kloo92

HSI-method

PFSMs
FSMsNFSMs

PNFSMs

Sabn85(UIO)

 methods without full fault coverage

 methods with full fault coverage

Nait81(TT)

Figure 6. General comparison based on applicability and fault coverage

4.1. Pure FSMs

 19/10/1994 Page 23

When the HSI-method is applied to FSMs, the conformance relation to be checked is the

equivalence, the same as in the W-method [Vasi73, Chow78], the Wp-method [Fuji91], the UIO-

method [Sabn85], the UIOv-method [Vuon89], the FF-method [Petr92] and the TT-method

(Transition tour) [Nait81]. The UIO-method does not guarantee full fault coverage, as it has been

pointed out in [Vuon89]; neither does the TT-method. These methods have been justified by

simulation on the basis of percentage of fault coverage. UIOv- and FF- methods guarantee full fault

coverage (i.e., check equivalence) only if no malfunction causes an increase in the number of states.

Since the W-, Wp- and HSI- methods detect all faults that may even increase the state number up to

the given bound, we need to compare our method with W- and Wp- methods only.

We first describe the W- and Wp- methods in our formalism. These methods assume that

specifications are minimal (completely-specified) FSMs. We note that an FSM is minimal if and

only if it is reduced.

DEFINITION: State identification sets { W0, W1, ..., Wn-1} :

Given an FSM, { W0, W1, ..., Wn-1} is a tuple of state identification sets if, for i=0, 1, ..., n-1,

Wi is a minimal set such that

 for j=0, 1, ..., n-1, (j≠i ==> ∃x∈Tr(Si)&Tr(Sj) (xin∈Wi)).

The test suite generated by the W-method is ∏W = ∪
S0=x=>Si &

xin∈P.({ε} ∪Li...∪Lim-n)

{ xin} .W

 where P= Q.({ ε} ∪Li), and Q is constructed according to Step 3 of Algorithm 1.

The test suite generated by the Wp-method is

 ∏Wp =∏1 ∪∏2 where é = W0∪W1∪ ...∪Wn-1

 ∏1 = ∪
S0=x=>Si &

xin∈Q.({ε} ∪Li...∪Lim-n)

{ xin} .é

 19/10/1994 Page 24

 ∏2 = ∪
S0=x=>Si &

xin∈(P\Q).({ ε} ∪Li...∪Lim-n)

{ xin} .Wi

For reduced FSMs, since δ=1, the test suite generated by the HSI-method is

 ∏ = ∪
S0=x=>Si &

xin∈P.({ε} ∪Li...∪Lim-n)

{ xin} .Di

We note that Di⁄é, i=0,1,..., n-1, but Wi⁄Di. Therefore, neither the Wp-method nor the HSI-

method necessarily produces smaller test suites than the other. For a given a characterization set W,

there must be a set of harmonized state identification sets { D0, D1, ..., Dn-1} such that Di⁄W,

i=0,1,..., n-1. It is easy to see |∏| ≤ |∏W|; that is, the HSI-method produces usually smaller (but

never larger test suites) than the W-method.

4.2. Partial FSMs

Test generation for partial FSMs has received much less attention than that for completely-specified

FSMs. However, practical communication software is often modeled as partial machines. Some

authors proposed to complete the "don't care" state/input combinations of partial machines in

accordance with a so-called completeness assumption [Sabn85, Vuon89]. The assumption states

that a machine should be constructed in such a way that, for every state/input combination

representing "don't care", it produces a null or error output and either remains in the same state or

goes into an error state. However, in many cases, implementations are not constructed in the above

way. Therefore, the completeness assumption is not always satisfied. Methods for test suite

generation from a deterministic partial FSM were proposed in [Evtu89, Petr91]. The HSI-method

combines the ideas of these methods with the concept of harmonized state identifiers, and further

generalizes them to nondeterministic machines.

4.3. Nondeterministic FSMs

 19/10/1994 Page 25

When we consider completely specified, nondeterministic FSMs, the conformance relation to be

checked is the equivalence. In this context, some test generation methods for NFSMs based on UIO-

sequences have been presented [Luo89, Trip92, Kloo92]. However, these methods cannot

guarantee full fault coverage (i.e., equivalence). The reason is the same as pointed out in [Voun89].

Therefore, they have limited fault detection power. The main advantage of the HSI-method over

these methods is that it guarantees full fault coverage.

5. CONCLUSION

We present in this paper a uniform method, called the HSI-method, for generating test suites from

different types of state machines, ranging from pure FSMs to arbitrary partially-specified, even

nonminimal, nondeterministic finite state machines. Unfortunately, if a given OPNFSM is not

minimal and its fuzziness degree δ is more than one, then the lengths of test cases produced by the

HSI-method grow rapidly when δ increases.

S2

a/0

Sn

S1

a/0

a/0

b/0

I2

Im

I1

b/1

S I

a/0

a/0

a/0

b/0

b/0

b/0

S1 and I1 are initial states of S and I, respectively.

Figure 7. An example of the worst case

Let n and m be the numbers of states in a specification and its implementation, respectively. In the

extreme case, when δ =n, the length of a test case can reach n6m. This upper bound holds even in

 19/10/1994 Page 26

the deterministic case. As shown in [Evtu89], for each pair n and m, there is a partial FSM with n

states, for which the shortest test case has the length n6m for its implementations with no more than

m states. Figure 7 gives an example of such machines, where δ=n for the PFSM S. Since

((a/0)n-1.b/0)m∈Tr(S) and ((a/0)n-1.b/0)m∉Tr(I), we have not(S≤ traceI). It is easy to see that

(an-1.b)m is the shortest test sequence of the length of n6m for distinguishing the two machines.

In spite of this bound, the HSI-method yields much smaller test suites for states machines that are

less fuzzy. As to the size of test suites produced by the HSI-method, its order is O(n3|Li |δm-n+1).

This method can be applied to test generation for the control part of specifications written in SDL or

ESTELLE. In such cases, we can first abstract SDL processes or ESTELLE modules to PNFSMs

by neglecting parameters; we then apply the test generation method for the resulting PNFSMs. In

the situation of testing concurrent programs specified in SDL or ESTELLE, even though individual

processes are deterministic, the whole system usually is nondeterministic; therefore, there is a need

for methods to test nondeterministic machines. As far as implementation of test generation tools is

concerned, the advantage of our method is that we need to implement only one test generation

method -- the HSI-method -- for PNFSMs, instead of implementing several individual methods for

FSMs, PFSMs and NFSMs since they are specific cases of partially-specified nondeterministic finite

state machines.

APPENDIX I: VALIDITY OF TEST METHOD

For the convenience of presentation, we make several conventions and definitions; then we give
several lemmas which are required for proving the Theorem 2.

Given an OPNFSM S (StS, Li, Lo, hS, S0) and a NFSM I (StI, Li, Lo, hI, I0), we assume in the
following:
(1) S has n states with n ≥ 2.
(2) the fuzziness degree of S is δ.

(3) M (StM, Li, Lo, hM, M0) is the prime machine of I, and may have at most m states with δm≥n.
(4) Si, Sj, Sk, Sl, and Mi, Mj, Mk, Ml represent the states of S and M, respectively.
(5) a tuple of harmonized state identification sets of S is { D0, D1, ..., Dn-1} .

 19/10/1994 Page 27

(6) a minimal set Q⁄Li* constructed from S such that: ∀Si∈St ∃x∈L* (x in∈Q & S0=x=>Si).

(7) a test suite ∏ is constructed such that:

 ∏ = ∪
S0=x=>Si &

 xin∈Q.({ε} ∪Li...∪Li δm-n+1)

{ xin} .Di = Q.({ ε} ∪ Li∪ ... ∪ Li δm-n+1)8{ D0, D1, ..., Dn-1}

 where for V⁄Li*, V 8{ D0, D1, ..., Dn-1} = ∪
S0=x=>Si
& xin∈V

{ xin}. Di.

Definitions of several notations
 notation meaning

 [Si,Mi] -u-> [Sj,Mj] For u∈L, Si-u->Sj and Mi-u->Mj

 [Si,Mi] =x=> [Sj,Mj] For x∈L*, Si=x=>Sj and Mi=x=>Mj

 [Si,Mi]-after-V Given a pair of states [Si,Mi]∈StS× StM, and a set V⁄Li*

 [Si,Mi]-after-V={ [Sj,Mj] | ∃x∈L* (x in∈V &
 [Si,Mi] =x=> [Sj,Mj])}
 D D =[S0, M0]-after-L*

 Dr Dr = { [Si,Mj] | [Si,Mj]∈D & Si=DiM j}
 Lik Lik = { ε} ∪ Li∪ ... ∪ Lik, when k≥1; and Li0 = { ε} .

It is easy to see Dr⁄D and |Dr|≤|D|≤n6m. Since both S and M are observable, given [Si,Mi]∈D

and x∈L*, if there is a pair [Sj,Mj]∈D such that [Si,Mi]=x=>[Sj,Mj], then [Sj,Mj] is the only pair
satisfying [Si,Mi]=x=>[Sj,Mj].

LEMMA 1: For V⁄Li*, assume |[S0,M0]-after-V | ≥k .

If | D|>k, then |[S0,M0]-after-V.({ ε} ∪ Li) | ≥k+1; and if | D|≤k, then

 [S0,M0]-after-V.({ ε} ∪ Li) = [S0,M0]-after-V.
Proof:
(I) To prove that the lemma holds when | D|>k.

The lemma holds when |[S0,M0]-after-V|>k . Now consider the case that |[S0,M0]-after-V|=k.
 statements reasons
(1) | D | > k hypothesis

(2) |[S0,M0]-after-V | =k hypothesis
(3) [S0,M0]-after-V⁄ D definition of D

(4) ∃[Si,Mi]∈D\[S0,M0]-after-V (1) & (2) & (3)

(5) ∃[Sk-1,Mk-1]∈[S0,M0]-after-V

 ∃[Sk,Mk],[Si,Mi]∈D\[S0,M0]-after-V

 ∃u∈L ∃x,y∈L* such that: xin∈V &
 ([S0,M0]=x=>[Sk-1,Mk-1]-u->[Sk,Mk]=y=>[Si,Mi] (4)

 19/10/1994 Page 28

(6) ∃[Sk,Mk]∈([S0,M0]-after-V.({ ε} ∪ Li))\[S0,M0]-after-V (5)

(7) |[S0,M0]-after-V.({ ε} ∪ Li) | ≥k+1 (6)

(II) To prove that the lemma holds when | D|≤k.

(1) | D | ≤ k hypothesis

(2) |[S0,M0]-after-V | ≥k hypothesis
(3) [S0,M0]-after-V⁄ D definition of D

(4) [S0,M0]-after-V.({ ε} ∪ Li) = [S0,M0]-after-V (1) & (2) &(3).

LEMMA 2: Assume S0=QM0. If | D|>δ6m, then |[S0,M0]-after-Q.Liδm-n| ≥δ6m;

 and if |D|≤δ6m, then [S0,M0]-after-Q.Liδm-n = D.
Proof:
Since δm≥n, Liδm-n is always defined.

(I) To prove that the lemma holds when | D|>δ6m.

(1) S0=QM0 hypothesis

(2) | D|>δ6m hypothesis

(3) |[S0,M0]-after-Q| ≥n S is initially-connected & (1)

(4) |[S0,M0]-after-Q.Liδm-n| ≥δ6m (2) & (3) & apply Lemma 1 δ6m-n times

(II) It is evident from Lemma 1 that the lemma also holds when |D|≤δ6m..

LEMMA 3: If Si=Di Mk, then Si—Sj ==> not(Sj=DjMk)
Proof:
(0) for V⁄ Li*, Si=V Mk iff Si=pref(V) Mk evident

(1) Si=Di Mk hypothesis
(2) Si—Sj hypothesis
(3) Sj=Dj Mk assumption

(4) Si=pref(Di) Mk (0) & (1)

(5) Sj=pref(Dj) Mk (0) & (3)

(6) ∃x∈Tr(Si)&Tr(Sj) (xin∈pref(Di)∩pref(Dj)) definition of Di & (2)
(7) let x be a sequence such that
 x∈Tr(Si)&Tr(Sj)(xin∈pref(Di)∩pref(Dj))
 in the following making a definition based on (6)
(8) x∈Tr(Si)\Tr(Sj) or x∈Tr(Sj)\Tr(Si) (7)

(9) xin∈Trin(Mk) The NFSM M is completely specified

(10) x∉Tr(Si)\Tr(Sj) (4) & (5) & (7) & (9)

(11) x∉Tr(Sj)\Tr(Si) (4) & (5) & (7) & (9)
(12) (8) is not true (10) & (11)
(13) not(Sj=Dj Mk) (3) causes the contradiction between (8) and (12).

LEMMA 4: For Si∈StS, |{ [Sk,Mk]| [Sk,Mk]∈Dr & Sk∈f(Si)}| ≤ m
Proof:

 19/10/1994 Page 29

Let Di = { [Sk,Mk]| [Sk,Mk]∈Dr & Sk∈f(Si)} .
(1) |StM| =m hypothesis
(2) |Di| >m assumption

(3) ∃[Sj,Mk],[Sl,Mk]∈Di (j≠l & Sj=DjMk & Sl=DlMk) (1) & (2)
(4) (3) is not true Lemma 3
(5) |Di| ≤m (2) causes the contradiction between (3) and (4).

LEMMA 5: | Dr| ≤ δ6m.
Proof:
Let E = { f(Si) | Si∈StS} , and Di = { [Sk,Mk]| [Sk,Mk]∈Dr & Sk∈f(Si)} .

(1) δ=|E| definition of δ

(2) Dr⁄ ∪
f(Si)∈E

D i definition of Dr

(3) ∀f(Si)∈E (|Di|≤ m) Lemma 4

(4) | Dr| ≤ Σ
f(Si)∈E

 |Di| (2)

(5) | Dr| ≤ δ6m (1) & (3) & (4).

LEMMA 6: If S0=
(Q.Liδm-n)⊗{D 0,...,Dn-1}

M0, then [S0,M0]-after-Q.Liδm-n = Dr.

Proof:
When | D| ≤ δ6m, the lemma is evident from Lemma 2. Now consider the case that | D| > δ6m.
(1) S0=

(Q.Liδm-n)⊗{D 0,...,Dn-1}
M0 hypothesis

(2) | D| > δ6m hypothesis

(3) | [S0,M0]-after-Q.Liδm-n | ≥δ6m (2) & Lemma 2
(4) [S0,M0]-after-Q.Liδm-n⁄ Dr (1)

(5) | [S0,M0]-after-Q.Liδm-n | ≤ | Dr| ≤ δ6m (4) & Lemma 5

(6) | [S0,M0]-after-Q.Liδm-n | = | Dr| = δ6m (3) & (5)

(7) [S0,M0]-after-Q.Liδm-n = Dr (4) & (6).

LEMMA 7: If S0=∏M0, then [S0,M0]-after-Q.Liδm-n+1 = Dr = D.
Proof:
When | D| ≤ δ6m, the lemma is evident from Lemma 2. Now we argue that | D| > δ6m does not
hold if S0=

(Q.Liδm-n+1)⊗{D 0,...,Dn-1}
M0 holds.

(1) S0=
(Q.Liδm-n+1)⊗{D 0,...,Dn-1}

M0 hypothesis

(2) | D| > δ6m assumption

(3) | [S0,M0]-after-Q.Liδm-n+1 | ≥δ6m+1 (2) & Lemma 2
(4) [S0,M0]-after-Q.Liδm-n+1⁄ Dr (1)

(5) | [S0,M0]-after-Q.Liδm-n+1 | ≤ | Dr| ≤ δ6m (4) & Lemma 5

(6) | D| ≤ δ6m (2) causes the contradiction between (3) and (5.

 19/10/1994 Page 30

LEMMA 8: If S0=∏M0, then
 [S0,M0]-after-Q.Liδm-n = [S0,M0]-after-Q.Liδm-n+1 = Dr = D.
Proof: S0=∏ M 0 implies S0=

(Q.Liδm-n)⊗{D 0,...,Dn-1}
M0. Then, because of S0=∏ M 0 and

S0=
(Q.Liδm-n)⊗{D 0,...,Dn-1}

M0, the lemma follows Lemmas 6 and 7.

LEMMA 9: If S0=∏M0, then S0≤quasiM0.
Proof:
(I) To show Tr(S0)⁄Tr(M0).
(1) S0=∏M0 hypothesis

(2) ∀x∈L*(if x in∈Q.Liδm-n and [S0,M0]=x=>[Sj,Mj],
 then (i) [Sj,Mj] is unique, and
 (ii) ∀a∈Li (Sj={a} Mj)) (1) & Lemma 8 &
 "S, M are observable"
(3) not (Tr(S0)⁄Tr(M0)) assumption
(4) ∃y∈L* ∃u∈L ∃[Si,Mi]∈Dr such that yin∈ Q.Liδm-n &
 [S0,M0]=y=>[Si,Mi] & Si-u-> & Mi\-u-> (3) & (1) & Lemma 8 &
 "S, M are observable"
(5) Tr(S0)⁄Tr(M0) (3) causes the contradiction between (2) and (4)
(II) To show ∀ x∈Tr(M0) (xin∈Trin(S0) ==> x∈Tr(S0))
(1) S0=∏M0 hypothesis

(2) ∀x∈L*(if x in∈Q.Liδm-n and [S0,M0]=x=>[Sj,Mj],
 then (i) [Sj,Mj] is unique, and
 (ii) ∀a∈Li (Sj={a} Mj)) (1) & Lemma 8 &
 "S, M are observable"
(3) not (∀ y∈Tr(M0) (yin∈Trin(S0) ==> y∈Tr(S0))) assumption

(4) ∃w∈Tr(M0) (win∈Trin(S0) & w∉Tr(S0)) (3)

(5) ∃z∈L* ∃u∈L ∃[Si,Mi]∈Dr such that zin∈Q.Lδm-n &

 [S0,M0]=z=>[Si,Mi] & Si\-u-> & uin∈Trin(Si) & M i-u-> (4) & (2) & Lemma 8

(6) ∀ x∈Tr(M0) (xin∈Trin(S0) ==> x∈Tr(S0))

 (3) causes the contradiction between (2) and (5).

LEMMA 10: S0=∏M0 iff S0=∏I0 .
Proof: Since I0=∏M0 and since both I and M are completely specified, S0=∏M0 implies S0=∏I0.

By the same reason, S0=∏I0 implies S0=∏M0.

We note that Lemmas 9 and 10 lead Theorem 2(i). The proof for Theorem 2(ii) is similar to that for
Theorem 2(i).

APPENDIX II: GENERATION OF CHARACTERIZATION SET AND
HARMONIZED STATE IDENTIFICATION SETS

DEFINITION: operators partition and refine :
For x∈L*, Class∈powerset(St), Classes∈powerset(powerset(St)), we define

 19/10/1994 Page 31

(1) partition is a function: L* × powerset(St) --> powerset(powerset(St))
 x partition Class = { A, B} where A and B are decided as follows:

A={ P| P∈Class & (x∈Tr(P) or xin∉Trin(P)}
B={ P| P∈Class & (x∉Tr(P)}

(2) refine is a function: L* × powerset(powerset(St)) --> powerset(powerset(St))

 x refine Classes = x partition Class∪
Class∈Classes .

ALGORITHM : Characterization set generation .
Input : An OPNFSM (St, Li, Lo, h, S0) with n states.
Output : a characterization set W.
variables Class: powerset(St);

Classes: powerset(powerset(St));
K: integer;
x: L*
V: powerset(L*)
W: powerset(Li*)

Step 1: Classes:={ St} ; k:=0; W:=∅; V:=∅. "∅ is an empty set"
Step 2: REPEAT

FOR ALL x (|x|=k & x∈L*) DO1 "|x| is the length of x"
IF |x refine Classes| >|Classes| THEN
 DO2 Classes:=x refine Classes; V:= V∪{ x} ENDDO2 ENDIF;

IF ∀Class∈Classes(|Class| =1) THEN GOTO Step 3 ENDIF
ENDDO1;
k:=k+1

ENDREPEAT UNTIL k=n(n-1)/2;
Step 3: W:=Vin.

Given an OPNFSM (St, Li, Lo, h, S0), for any pair of distinguishable states, there must be a t∈Li*
of a length not more than n(n-1)/2 such that t distinguishes them [Star72]. Therefore, there must be
a characterization set W such that ∀x∈W (|x|≤n(n-1)/2). For a completely specified minimal
machines, the above algorithm terminates before k=n.

ALGORITHM : Generation of harmonized state identification sets.
Input : An OPNFSM (St, Li, Lo, h, S0), a characterization set W.
Output : Harmonized state identification sets { D0, D1, ..., Dn-1} .
variables i, j: integer;

x: L*
D0, D1, ..., Dn-1: powerset(Li*)

Step 1: Let i:=0. Choose a minimal D0 such that
(i) D0⁄pref(W)∩Trin(S0), and

(ii) for j=1, ..., n-1, (if Sj—S0, ∃x∈Tr(S0)&Tr(Sj) (xin∈D0∩Trin(Sj))).
Step 2: If i=n-1, stop. Otherwise, let i:=i+1, and choose a minimal Di such that

 19/10/1994 Page 32

(i) Di⁄pref(W)∩Trin(Si), and

(ii) for j=0, 1, ..., i-1, (if Sj—Si, ∃x∈Tr(Si)&Tr(Sj) (xin∈pref(Di)∩pref(Dj))), and
(iii) for j=i+1, ..., n-1, (if Sj—Si,

 ∃x∈Tr(Si)&Tr(Sj) (xin∈Di∩Trin(Sj))).

 Go to Step 2.

REFERENCES

[Aho90] Alfred V. Aho, Barry S. Bosik and Stephen J.Griesmer, "Protocol Testing and Verification within AT&T",
AT&T Technical Journal, Vol.69, No.1, 1990, pp.4-6.

[AT&T90] AT&T Technical Journal, Special Issue on Protocol Testing and Verification, Vol.69, No.1, 1990.
[Boch89] Gregor v. Bochmann, "Trace Analysis for Conformance and Arbitration Testing", IEEE Transactions on

Software Engineering, Vol. SE-15, No.11, 1989.
[Boch91] G.v. Bochmann, A. Das, R. Dssouli, M.Dubuc, A.Ghedamsi, and G.Luo, "Fault Models in Testing", IFIP

Transactions, Protocol Testing Systems IV (the Proceedings of IFIP TC6 Fourth International Workshop on
Protocol Test Systems), Ed. by Jan Kroon, Rudolf J. Heijink and Ed Brinksma, 1992, North-Holland, pp.17-30.

[Boch92] G.v. Bochmann and Reinhard Gotzhein, "Specialization of Object Behaviors and Requirement
Specifications", in preparation.

[Beli89] F. Belina and D. Hogrefe, "The CCITT Specification and Description Language SDL", Computer Networks
and ISDN Systems, Vol. 16, pp.311-341, 1989.

[Brin88] Ed Brinksma, "A Theory for the Derivation of Tests", IFIP Protocol Specification, Testing, and Verification
VIII, Ed. by S. Aggarwal and K. Sabnani, Elsevier Science Publishers B.V.(North-Holland), 1988, pp.63-74.

[Budk87] S. Budkowski and P. Dembinski, "An Introduction to Estelle: A Specification Language for Distributed
Systems", Computer Networks and ISDN Systems, Vol. 14, No.1, 1987, pp.3-23.

[Cern92] E. Cerny, "Verification of I/O Trace Set Inclusion for a Class of Nondeterministic Finite State Machines",
ICCD'92 Conference, Cambridge, Mass., October 1992.

[Chow78] T.S.Chow, "Testing Software Design Modeled by Finite-State Machines, IEEE Transactions on Software
Engineering, Vol. SE-4, No.3, 1978.

[Evtu89] N. V. Evtushenko and A.F. Petrenko, "Fault-Detection Capability of Multiple Experiments", Automatic
Control and Computer Science, Allerton Press, Inc., New York, Vol.23, No.3, 1989, pp.7-11.

[Fuji91] S.Fujiwara, G. v. Bochmann, F.Khendek, M.Amalou and A.Ghedamsi, "Test Selection Based on Finite State
Models", IEEE Transactions on Software Engineering, Vol SE-17, No.6, June, 1991, pp.591-603.

[Fuji91b] Susumu Fujiwara and Gregor von Bochmann, "Testing Nondeterministic Finite State Machine with Fault
Coverage", IFIP Transactions, Protocol Testing Systems IV (the Proceedings of IFIP TC6 Fourth International
Workshop on Protocol Test Systems,1991), Ed. by Jan Kroon, Rudolf J. Heijink and Ed Brinksma, 1992, North-
Holland, pp.267-280.

[Fuji91c] S. Fujiwara and G. v. Bochmann, "Testing Nondeterministic Finite State Machine", Publication #758 of
D.I.R.O, University of Montreal, January 1991.

[Gill62] A. Gill, Introduction to the Theory of Finite-State Machines, New York: McGraw-Hill, 1962, 270p.
[Gone70] G. Gonenc, "A Method for Design of Fault Detection Experiments", IEEE Transactions on Computer, Vol

C-19, June, 1970, pp.551-558.
[Hopc79] John E.Hopcroft, Jeffery D.Ullman, Introduction to Automata Theory, Languages, and Computation, 1979,

Addison-Wesley Publishing Company, Inc., 418p.
[ISO9074] ISO, Estelle - A Formal Description Technique Based on an Extended Finite State Transition Model, IS

9074.
[ISO8807] ISO, Lotos - A Formal Description Technique Based on the Temporal Ordering of Observational Behavior,

IS-8807, 1989.
[Kloo92] Hans Kloosterman, "Test Derivation from Nondeterministic Finite State Machines", Participants'

Proceedings of 5th International Workshop on Protocol Testing Systems, Ed. by G.v. Bochmann, R.Dssouli and A.
Das, 1992, Montreal, Canada, (to be appeared in IFIP Transactions, Protocol Testing Systems V, North-Holland),
pp.254-265.

[Kroo92] J. Kroon, Inres State Tables, Private Communication, 1992.
[Lee91] D.Y. Lee and J.Y. Lee, "A Well-Defined Estelle Specification for the Automatic Test Generation", IEEE

Transactions on Computers, Vol.40, No.4, April, 1991, pp.526-542.

 19/10/1994 Page 33

[Luo89] Gang Luo, Junliang Chen, "Generating Test Sequences for Communication Protocol Modeled by
CNFSM", Information Technology: Advancement, Productivity and International Cooperation (Proc. of the 3rd Pan
Pacific Computer Conference), Vol.I , Ed. by Chen Liwei et al, 1989, International Academic Publishers, pp.688-
694.

[Luo91] Gang Luo, Anindya Das, and Gregor von Bochmann, "Test Selection Based on SDL Specification with Save",
SDL’91: Evolving Methods (Proceedings of 5th SDL Forum), North-Holland, 1991, pp.313-324.

[MUTE92] D. Hogrefe, MUTEST: OSI Formal Specification Case Study: the Inres Protocol and Service.
[Nait81] S.Naito and M.Tsunoyama, "Fault Detection for Sequential Machines by Transition Tours", in Proc. FTCS

(Fault Tolerant Comput. Syst.), 1981, pp.238-243.
[Petr91] Alexandre Petrenko, "Checking Experiments with Protocol Machines", IFIP Transactions, Protocol Testing

Systems IV (the Proceedings of IFIP TC6 Fourth International Workshop on Protocol Test Systems, 1991), Ed. by
Jan Kroon, Rudolf J. Heijink and Ed Brinksma, 1992, North-Holland, pp.83-94.

[Petr92] Alexandre Petrenko and Nina Yevtushenko, "Test Suite Generation for a FSM with a Given Type of
Implementation Errors", IFIP 12th International Symposium on Protocol Specification, Testing, and Verification,
(participant's proceedings), U.S.A., 1992.

[Pitt90] D. H. Pitt and D. Freestone, "The Derivation of Conformance Tests from Lotos Specifications", IEEE
Transactions on Software Engineering, Vol.16, No.12, Dec. 1990, pp.1337-1343.

[Rayn87] D. Rayner, "OSI Conformance Testing", Comput. Networks & ISDN Syst., Vol.14, 1987, pp.79-89.
[Roug89] Anne Bourguet-Rouger & Pierre Combes, "Exhaustive Validation and Test Generation in Elivis", SDL

Forum'89: The Language at Work, North-Holland, 1989.
[Sabn85] K.Sabnani & A.T.Dahbura, "A New Technique for Generating Protocol Tests", ACM Computer

Communication Review, Vol.15, No.4, 1985, pp.36-43.
[Sari84] Behcet Sarikaya and Gregor v. Bochmann, "Synchronization and Specification Issues in Protocol Testing",

IEEE Transactions on Communications, Vol.COM-32, No.4, April 1984, pp.389-395.
[Sari87] B. Sarikaya, G.v. Bochmann, and E. Cerny, "A Test Design Methodology for Protocol Testing", IEEE

Transactions on Software Engineering, Vol.13, No.9, Sept.. 1987, pp.989-999.
[Sidh89] D. P. Sidhu and T. K. Leung, "Formal Methods for Protocol Testing: A Detailed Study", IEEE Transactions

on Software Engineering, Vol SE-15, No.4, April, 1989, pp.413-426.
[Star72] P.H. Starke, Abstract Automata, North-Holland/American Elsevier, 1972, 419p.
[Trip91] Piyu Tripathy and Behcet Sarikaya, "Test Generation from LOTOS Specification", IEEE Transactions on

Computer, Vol C-40, No.4, 1991, pp.543-552.
[Trip92] Piyu Tripathy and Kshirasagar Naik, "Generation of Adaptive Test Cases from Nondeterministic Finite State

Models", Participants' Proceedings of 5th International Workshop on Protocol Testing Systems, Ed. by G.v.
Bochmann, R.Dssouli and A. Das, 1992, Montreal, Canada, (to be appeared in IFIP Transactions, Protocol Testing
Systems V, North-Holland), pp.266-279.

[Vasi73] M. P. Vasilevskii, "Failure Diagnosis of Automata", Cybernetics, Plenum Publishing Corporation, New
York, No.4, 1973, pp.653--665.

[Vuon89] S. T. Vuong, W.W.L. Chan, and M.R. Ito, "The UIOv-method for Protocol Test Sequence Generation",
Proceedings of IFIP TC6 Second International Workshop on Protocol Testing Systems, Ed. by Jan de Meer, Lothar
Machert and Wolfgang Effelsberg, 1989, North-Holland, pp.161-175.

[Witt92] M. F. Witteman, R. C. van Wuijtswinkel and S.Ruud Berkhout, "Nondeterministic and Default Behaviour",
Participants' Proceedings of 5th International Workshop on Protocol Testing Systems, Ed. by G.v. Bochmann,
R.Dssouli and A. Das, 1992, Montreal, Canada, (to be appeared in IFIP Transactions, Protocol Testing Systems V,
North-Holland), pp.241-252.

 19/10/1994 Page 34

APPENDIX III: PROPERTIES OF THE CONFORMANCE RELATIONS

LEMMA: Given three states S, P, and I, if S ≤ref P and P ≤ref I, then S≤ref I; that is, ≤ref is
transitive.
Proof:
Part I: It is evident that Tr(S)⁄Tr(I) from the hypothesis.
Part II: To prove ∀ x∈Tr(I) (xin∈Trin(S) ==> x∈Tr(S))

(1) S ≤ref P hypothesis

(2) P ≤ref I hypothesis

(3) x∈Tr(I) hypothesis

(4) x∈Tr(P) (2) & (3)

(5) xin∈Trin(S) hypothesis

(6) x∈Tr(S) (1) & (4) & (5)

(7) xin∈Trin(S) ==> x∈Tr(S) (5) & (6) & "==>+ "

(8) ∀ x∈Tr(I) (xin∈Trin(S) ==> x∈Tr(S)) (3) & (7) & "∀+ "
The lemma holds from Parts I and II.
[End of proof]

ALGORITHM : State identification set generation .
Input : A PNFSM (St, Li, Lo, h, s0), a given state P
Output : A state identification set ID for P.
variables Class: powerset(St);

Classes: powerset(powerset(St));
K: integer;
x: L*
ID: powerset(L*)

Method:
Step 1: Classes:={ St} ; k:=1; ID:=φ.
Step 2: REPEAT

FOR ALL x (|x|=k &x∈L*) DO1

IF ∃Class∈Classes ({ P} ∈Class & |x partition Class| >1) THEN

 DO2 Classes:=x refine Classes; ID:= ID∪{ x} ENDDO2 ENDIF;

IF ∀Class∈Classes ({ P} ∈Class ==> |Class| =1) THEN STOP ENDIF
ENDDO1; K:=K+1

ENDREPEAT;
[End of algorithm].

DEFINITION : Product graph G:
A product graph is a directed graph G such that:
(i) The graph G has | D | nodes. Each node is labeled a pair <Si,Mi> in D. Different nodes have

different labels.

 19/10/1994 Page 35

(ii) For each pair of nodes <Si,Mi> and <Sj,Mj>, there is a directed edge from <Si,Mi> to <Sj,Mj>
with a label u if and only if <Si,Mi> -u-> <Sj,Mj>.

[End of definition].

DEFINITION: Unique state identification sets { W0, W1,, Wn-1} :
Given an OPNFSM and a set of harmonized unique state identification sets { D0, D1,, Dn-1} ,

a set of unique state identification sets is a set of sets { Wi | Si∈St & Wi⁄Di} such that :

∀Si∈St (i≠j ==>
 if Si is distinguishable from Sj,
 then ∃x∈Wi (xin∈Trin(Si)∩Trin(Sj) & x∈Tr(Si)&Tr(Sj)) .
[End of definition].

S0

S1

S2

a/d

a/d

b/e

a/e

Specification S

b/e

b/d

a/?
?

don't care
a/f

correct implementation1 I1

a/e

faulty implementation2 I2

Li = { a, b } Lo = { d, e, f }

a/f

I1 cannot be distinguished from I2 by black-box testing.

Figure 2. Relation between specification and implentations

S0

S1

S2

a/d

a/d

b/e

a/e

b/e

b/d

S0

S1

S2

a/d

a/d

b/e

a/e

b/e

b/d

