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ABSTRACT In order to test the control portion of communication softwspecifications are
usually first abstracted to state machines, then test cases are generated from the resulting mach
The state machines obtained from the specification are dioeim partially-specifiedand
nondeterministic. We come out with a method of generating test suites for the software that
modeled by partially-specified nondeterministic finite state machines (PNFSMs). On the basis
intuitive notions, a conformance relation, caltg@si-equivalence, is introduced for such machines,
which serves as a guide to test generatiOnr method is also applicable to completely-specified
deterministic machines, partially-specified deterministic machines, and completely-specifie
nondeterministic machines, which are typical classes of PNFSMs. When applied to such classe:
machines, this method usually yields smaller test suites with full fault coverage for each class
machines than the existing methods for the same class which also provide full fault coverage. 1
test suites generated by the method can be used to check a conformance relation betwec¢
specification and its implementations.
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1. INTRODUCTION

The testing phase represents a large effort within the common software development cycle. In
area of communication software, systematic approaches have been developed for proto
conformance testing [Rayn87, Boch89], and the selection of appropriate test suites [Fuji9l, Pitt¢
Sidh89, Sari87, Sari84, Chow78]. These approaches can produce significant economic bene
[Ah090, AT&T90]. Usually, the specifications of communication software are first abstracted tc
state machines, then test cases are generated from the resulting machines [Lee91, Roug8¢
considerable amount of work has been done to generate test casesbetel y-specified,
deterministic finite state machines (FSMs) [Fuji91, Sidh8&how78, Gone70, Vuon89, Sabn85
Nait81, Vasi73]. However, the specifications of communication software often cdyttin
nondeterministi@and partially (or incompletely) specified behavior. For example, all the three major
specification languages for communication software, LOTOS [Bolo87, 1SO8807], ESTELLE
[Budk87, 1ISO9074] and SDL [Beli89] support the description of nondeterminism (SDL will
support nondeterminism in the near future [SDL91]); and ESTELLE and LOTOS can descrit
partially-specified behavior. Therefore, the state machines abstracted from the specifications may
both partially-specifiecand nondeterministic. There is a practical need for testing nondeterministic
models [Witt92]; in particular, communication protocols, when tested under the ISO remote testir

architecture, are often modeled as partially-specified and nondeterministic finite state machines.

Some work on test generation for nondeterministic models has been done in the context of LOT!
[Trip91, Pitt90, Brin88] and finite labeled transition systems [Fuji91b, Fuji91c], but they are no
applicable to testing nondeterministic state machines where every transition is associated with
input/output pair. Furthermore, several results have been reported on test generation for eit
partially-specified deterministic machines [Petr91, Evtu89], or completely-specified nondeterministi
machines [Luo89, Trip92, Kloo92]. The methods given in [Luo89, Trip92, Kloo92] are all basec

on the generalization of unique 1/0 sequences [Sabn85], even when applied to FSMs, a spec



19/10/1994 Page 3

class of NFSMs, they still cannot guarantee full fault coverage, although full fault coverage fc
FSMs can be assured by many other methods. The reason is the same as pointed out in [Vour
Therefore, they have limited fault detection power. Furthermore, no work on test generation fi

both partially-specifiecand nondeterministic finite machines has been reported.

We study in this paper test generation for the finite state machines that cdudthbeartially-

specifiedand nondeterministic, guided by pre-defined conformance relations.

In the area of protocol conformance testing, the meaning of conformance between a specification i
the valid implementations is specified either by informal description, or by precisely-define(
conformance relations. Usually, the formally-defined conformance relations are preferable sin
they provide a means to direct the development of test generation methods and a basis to analyz:
validity of the methods. For completely-specified deterministic finite state machines (FSMs)
partially-specified deterministic finite state machines (PFSMs), and completely-specifiet
nondeterministic finite state machines (NFSMs), there are commonly-defined conformance relatio
in the literature [Fuji9l, Chow78, Vasi73, Star72, Gill62]. However, no conformance relation ha
been reported for partially-specified nondeterministic finite state machines (PNFSMs), except f
some general study on the specialization of object behaviors and requirement specificatic

[Boch92].

In Section 2, after formally defining PNFSMs and several related notations, we introduce
conformance relation, callegliasi-equivalence, for PNFSMs. The relation is defined in terms of
input/output traces in accordance with black-box testing strategy. When the ridatpplied to
FSMs, NFSMs and PFSMs, which are specific cases of PNFSMs, it coincides to the correspond
conformance relations given in the literature. We also define several concepts which are relatec

testing.
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Guided by the conformance relations, in Section 3, we come out with a method for generating t
cases from PNFSMs. We first transform a PNFSM to an equivalent one that has a lower degre¢
nondeterminism, calleobservable PNFSM (OPNFSM). The OPNFSMs have the property that a
state and an input/output pair uniquely determine the next state, while a state and an input alone
not necessarily determine a unique next state and an output. We then generate test suites fron
resulting OPNFSM by a method which we ddlrmonized State Identification method (HSI-

method). As an example, we finally apply the method to generate a test suite for a communicat

protocol, callednres [MUTE92], within the remote testing architecture.

In Section 4, we compare our method with other test generation methods, on the basis
applicability, fault coverage and the size of test suites. The main advantage of our method over

other methods is its broadest applicability with full fault coverage.

We conclude in Section 5 by discussing some extreme case of the length of test cases and the u
bound of the size of test suites, for partial machines. We also discuss the application of the metl

to generating test cases for specifications written in SDL or ESTELLE.

2. NOTATIONS AND ABSTRACT TESTING FRAMEWORK

We first give in this section the definition of PNFSMs, then present conformance relations fc

PNFSMs under the black-box testing strategy (where implementations are assumed to be bla

boxes), and finally define several concepts which are related to testing.

2.1 Partially-specified nondeterministic finite state machines (PNFSMs)

We first define PNFSMs in a traditional form similar to that given in [Star72] for NFSMs. For the

convenience of presentation, we then introduce additional notations for PNFSMs similar to that f
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labeled transition systems [Brin88, Fuji91b, Fuji91c]; we also define several specific classes

PNFSMs.

DEFINITION Partially-specified Nondeterministic Finite State Machine :
A Partially-specified Nondeterministic Finite Sate Machine (PNFSM) is defined as a 5-tuple
(St, Li, Lo, h, $) where:
(1) St is a finite set of states, $8p, Sy, ..., -1} -
(2) Li is a finite set of inputs.
(3) Lo is a finite set of outputs.
(4) h is a behavior function:
h: 4 =3 powerset(Sk Lo) \{ (I} where

() HESt= Li (PNFSM becomes completely specifiedSESt x Li);

(i) O denotes the empty set.
Let P, QISt, dILi and HlLo. We write P-a/b->Q to denote (Q[HW)(P,a); P-a/b->Q is called a
transition from P to Q with label a /b.

(5) Sis the initial state, which is in 1

We assume that a "reliable” reset inputis available in any implementation of a PNFSM such that

upon receiving in any state the implementation returns to the initial state.

We often use in the following the term "partial machine" to refea RNFSM, which may be
deterministic or not.A partial machine can be represented by a directed graph in which the node
are the states and the directed edges are transitions linking the states. Figure 1 shows an exam

such a machine.
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alu

Li={a,b,c}

bly alv Lo={u,v,w, XY, z}

alv c/w

the initial state is S.

Figure 1. An example of a partial NF¢

For a PNFSM, if no two outgoing transitions from the same state have the same input, then-

machine is deterministic; and we call it a partial FSM (PFSM).

For the convenience of the presentation, we also introduce in Table 1 several notations.

Table 1. Notation for PNFSMs

notation meaning

L L¥ Lo, a set of input/output pairs; u denotes such a pair

€ € is the empty sequence.

L* set of sequences over L; x denotes such a sequence.
Note thelflL*

P\-u-> For P, Q St, not(CIQ( P-u->Q))

P==>Q P=Q

P=a/b=>Q P-a/b->Q
P=x=>Q [Py, ..., R-10St (P=R=u1=>P1...=w=>P=Q)

P=x=> QOSt (P=x=>Q)
Tr(P) Tr(P){ x| P=x=3}
xin ForXL*, xin is an input sequence obtained by deleting all outputs in x
( note thatX¥Li* )
vin For XCL*, vin={xin| xOV }
Trin(P) Trin(P)<{ xin | P=x=>},

( note tharin(P)=Li* for each state P of completely-specified NFSMs)

DEFINITION Initially connected PNFSM:



19/10/1994 Page 7

Given a PNFSM S (St, Li, Lo, hpl S is said to binitially connected iff
O0SOStIkOL* (Sp=x=>S). L]

In initially connected PNFSMSs, every state is reachable from the initial state.

Without loss of generality, we assume that all PNFSMs considered in the rest of the paper
initially connected. If a given PNFSM S is not initially connected, we may consider only such

submachine which is a portion of S consisting of all states and transitions that are reachable from
initial state of S. The unreachable states and transitions of machines do not affect the behavior of

machines.

We now define several specific classes of PNFSMs, which are useful concepts for test generati
We first define so-calledobservable PNFSMs, a concept originally described in [Star72] for

completely specified machines, which represents a restricted form of nondeterminism.

DEFINITION Observable PNFSMs (OPNFSMs) :
A PNFSM is said to bebservable if for every state $ISt, and every input/output pair alb, there

is at most one transition; thatis, S-a/br&8S-a/b->$ == $,=S,. []

As an example, Figure 1 shows an OPNFSM. OPNFSMs are a subclass of partial machines.
observable machines, a state and an input/output pair can uniquely determine at most one next s
However, an OPNFSM may still be nondeterministic in the sense that a state and an input can
determine a unique next state and a unique output. We note that all deterministic machines

observable.

DEFINITION: Reduced PNFSMs :
An PNFSM isreduced iff 0S, SOSt(# == Tr(S)2Tr(S)). [
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A PNFSM is reduced if and only if none of its states accept the same set of input/output sequence

DEFINITION: Distinguishable states:

Given a pair of states &nd $ § and $aredistinguishable, written $% §, iff
XOTr(S)BTr(S) (XNOTrin(S)n Trin(s))

where  Tr(S§)BTr(S)=(Tr(S)0OTr(S)) \(Tr(S)nTr(S)).

If a pair of stateare not distinguishable, we say that theyiagestinguishable. [

Two states are distinguishable if and only if there is an input/output sequence x such that x can

accepted by only one of the two states but the input sequénzebe accepted by both of them.

DEFINITION: Minimal PNFSMs:
A PNFSM isminimal iff OS, SOSt (¥ == S%S). U

A PNFSM is minimal if and only if every pair of states are distinguishable. A minimal PNFSM is
reduced, but a reduced PNFSM is not necessarily minimal. Given a minimal machine S, each stat
distinguishable from all other states; however, this is not necessarily true for a reduced machine.
we consider a completely specified machine, then a reduced machine is also minimal. T

OPNFSM shown in Figure 1 is reduced, but not minimal.
We also need the following concepts for presenting our method.
DEFINITION: prefix set pref(V) for a given set of sequences:

Given a set of sequence§IM* ,

pref(V)={t1 | t20Li* & t1.t2 0V & tl#e} where t1.t2 is the concatenation of t1 with []
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DEFINITION: Concatenation of sets of i/0 sequences or input sequences.
Assuming V1, V2SL* (or V1, V2 €Li*), the concatenation of sets, written ".", is defined as
follows:

Viv2 ={ t1.t2| t10V1 & t20V2} where t1.t2 is the concatenation of t1 with t2.

We write VW= V.Vvn-l for n>1 and ¥=Vv. [

2.2. Conformance relations for PNFSMs

Before any study on how to generate test suites for PNFSMs, the following question must first
answered: under the black-box testing strategy, what kind of conformance relation betweer
specification and the corresponding implementation is expected to hold ? There are seve
conformance relations defined in the literature for FSMs, PFSMs and NFSMs. However, n

conformance relation has been reported for PNFSMs.

Generalizing the conformance relations for FSMs, PFSMs and NFSMs on the basis of intuitiy
notions, we will define in this section conformance relations for PNFSMs in terms of the relation

between their initial states.

For (completely-specified, deterministic) FSMs, there is a widely-accepted conformance relatio
calledequivalence, (see, e.g., [Fuji9l, Chow78, Vasi73, Star72, Gill62]), which requires that a

specification and its implementation produce the same output sequence for every input sequence.

DEFINITION Equivalence:
Theequivalence relation between two states P and Q in PNFSMs, written
R=Q, holds iff Tr(P)=Tr(Q)
Given two PNFSMs S and | with their initial statesa®d b, we write S| iff So=lg. [
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We say that an implementation leguivalent to its specification S if and only if=8. The above
definition is similar to that in [Fuji91, Chow78, Vasi73, Gill62], but it can also be applied to
PNFSMs. The above relation is an equivalence relation since it is reflective, transitive ar

symmetric. It corresponds to the equivalent relation between NFSMs given in [Star72].

We now explain the intuitive notions for defining a conformance relation for partial machines. W
say that a state machine is partial if its behavior function is not defined for all state/inpt
combinations. The behavior function of a partial machine may not be completely specified for certe
reasons. There are two basic interpretations for such an undefined state/input combination, nan

"don't care" and "forbidden".

In the case of "don't care" interpretation, an undefined state/input combination means that t
specification allows any further behavior of an implementation starting from a certain state undei
certain input. Since an implementation can always be represented by a completely specified mact
it actually completes a given partially specified machine. In other words, a partial machine represe
a set of completely specified machines, and its implementation is required to conform to one of the

machines.

In the second interpretation, an undefined state/input combination means that the input in t
combination cannot be applied to the state, i.e., a transition cannot be executed, due to limitatic
imposed by the environment. For example, it is impossible to send data to a protocol machine vi
connection until it has accepted this connection. Undefined "forbidden" state/input combinations w
never occur in real executions. Thus, any method for executable test suite derivation should |

consider these combinations.
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Both interpretations require that the external behavior of an implementation is equal to that of |
specification only for all those input sequences that can be accepted by a specification, instead o
possible sequences. For PFSMs (a specific class of PNFSMs), a conformance relation, cal
guasi-equivalence, was presented in [Petr91, Star72, Gill62], which is in accordance with the abov
intuitive notions. The relation requires thédr every input sequence that can be accepted by a

specification, the specification and its implementation produce the same output sequence.

Guided by the same intuitive notions, we generalize the quasi-equivalence to PNFSMs by requiri
that, for every input sequence that can be accepted by a specification, the specification and its
implementation produce the same set of output sequences. We formally define the generalized

guasi-equivalence as follows.

DEFINITION Quasi-equivalence:
Thequasi-equivalence relation between two states P and Q in PNFSMs, written
PquasiQ, holds iff
@ Tr(P)X=Tr(Q), and
(b) O xOTr(Q) ( XnOTrin(P) === xOTr(P))
Given two PNFSMs S and | with their initial stateg &d b, we write Squasi (i.€.,

implementation | isjuasi-equivalent to its specification) iff §<quas|o. O]

In some situations [Boch92, Cern92], a weaker conformance relation, tratednclusion, is
needed, which requires that the implementations accept all the input/output sequences that cal

accepted by their specifications.

DEFINITION Trace-inclusion:

Thetrace-incluson relation between two states P and Q in PNFSMs, written

PoyraceQ, holds  iff Tr(P)STr(Q),
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Given two PNFSMs S and | with their initial statesa®d b, we write Sracd iff So<tracdo. L1

It is easy to prove that the quasi-equivalesoé trace-inclusion relation are reflective and transitive.

Therefore, they are preorders.

We present in the following the relations among the above-defined conformance relations .

THEOREM 1: Given two PNFSMs S and |, assuming that they have common Li and Lo, we

have the following statements:

(i) &l &= SEyacd & I<traceS
(||) &| === %quagl & ISquaSs
(iii) 3quas| =2 Eyracd

(iv) if S and | are (completely-specified) NFSMs, thedggsl == S=I
(v) if Sand | are (deterministic) PFSMs, then <q@sl] <==% Syacd

(vi) if S and | are (completely-specified, deterministic) FSMs, then

Suasl =3 S=l €3 Kyad. [

The above theorem is evident from the corresponding definitions.

It is well-known that any nondeterministic finite automaton where each transition is associated wi
a single symbol (not with an 1/0O pair) can be modeled by an equivalent deterministic automatc
[Hopc79]. However, nondeterministic finite state machines, where each transition is associated w
an 1/O pair, cannot be modeled by equivalent deterministic finite state machines. For example, i
NFSM with S-a/b-> and §alc->, we have{ a/b, a/¢ STr(Sp). On the other hand, no
deterministic FSM ha§a/b, a/¢ STr(Sg). Therefore, nondeterministic finite state machines, in

general, cannot be transformed to equivalent deterministic finite state machines for test generation
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2.3. Definitions related to testing

We define in this section several concepts which are related to tesing nondeterministic finite st:

machines.

DEFINITION Test case andtest suite:
For a given PNFSM, a sequence t of a finite lengthtest@ase if tOTrin(Sy).

A test stite is a finite set of test casd_]

DEFINITION : Trace-inclusion with respect to a given input set.
Thetrace-inclusion relation between two states P and Q, with respect to a given ingjtskit,
written RnQ, holds iff  (VITr(P))STr(Q)
where ¥ xOL* & x nOMNTrin(P)NTrin(Q)} .
Given two PNFSMs S and | with their initial statesa®d b, we write Sl iff Sp<plo. ]

We nOteZ Stracé |ff DHQLI* (SSHI)

DEFINITION : Equivalence with respect to a given input set:
Theequivalence relation between two states P and Q, with respect to a given ingjtdat,
written
PsQ, holds iff &P & EpQ
Given two PNFSMs S and | with their initial statesa®d b, we write Sl iff  Sp=plo. ]

The equivalence relation with respect to a given inpufjsetquires thatfor every input sequence
in []that can be accepted by both a specification and its implementation, the specification and its

implementation produce the same set of output sequences.
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The relation is reflective and symmetric but not transitive. We note=(i) Siff O[]<Li*

(S=n), and (i) Squasl iff OIS Trn(S) (Sn).

In order to test nondeterministic implementations, one usually make a soemtiplte-testing
assumption: it is possible, by applying a given input sequence to a given implementation a finite ¢
number of times, to exercise all possible execution paths of the implementation which are travers
by the input sequence [Fuji91b, Fuji91c, Luo8%ithout such an assumption, no test suites can
guarantee full fault coverage (in terms of conformance relations) for nondeterministic
implementations. In practice, for an implementation and a given input sequence, the probability tf
not all possible corresponding execution paths are exercised at least once, may be reduced to clo

zero by applying the input sequence a sufficiently large number of times.

3. TEST GENERATION

We present in this section a test generation method for PNFSMs, ld&lledethod. The test suites
generated by the HSI-method can be used to test PNFSM implementations against th

specifications with respect to the quasi-equivalence or trace-inclusion relations.

We first describe in Section 3.1 how to generate test cases for OPNFSMs, a specific class of pai
machines. We then give in Section 3.2 an algorithm for transforming an arbitrary PNFSM to a trac
equivalent OPNFSM. Incorporating methods given in Sections 3.1 and 3.2, we can generate 1
cases fomrbitraty PNFSMs. As an example, in Section 3.3, we apply the method to generate

test suite for a communication protocol, calleces.

3.1. Test generation for OPNFSMs
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We first define several key concepts for presenting our method, then give an algorithm of generat

test suites, and finally present a theorem for establishing the validity of the algorithm.

DEFINITION: Characterizationset W:
Given an OPNFSM, eharacterization set is a minimal set WELi* such that:

0Si, SOSt ($&S) === XOTr(S)BTr(S) XKNOTrin(S)nTrin(S)nW) ). ]

The above definition is generalized from the concept of the characterization set for FSMs given
[Chow78] to PNFSMs. The W-set is used to identify states in a given machine. An algorithm «

generating characterization sets is given in Appendix Il.

We find, however, that it is not neccesary to use the whole characterization set for sta
identification. We only use the subsets of this set, calenhonized state identification sets, for

state identification.

DEFINITION: Harmonized state identification sets { Do, Dy, ..., Dh-1}:
Given an OPNFSM with n statg)g, Dy, ..., Dh-1} is a tuple oharmonized state identification
sets if, for i=0, 1, ..., n-1, Pis a minimal set such that
(i) DiSTrin(S)n pref(W), and
(i) for j=0, 1, ..., n-1, &S}, == XOTr(S)BTr(S) ( x"Opref(Dj)npref(Dj) ). ]

For the OPNFSM shown in Figure 13#D,=Ds={a.b}. An algorithm of generating harmonized

state identification sets is given in Appendix Il.

DEFINITION: subscripts(A) for a given state set:
For AC St, subscripts(A) is a string of integers i1, i2, ..., ik,
where €li2< ..<ik and AH{ Sj1, S, ..., S }. [
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Given two sets of states A and B, we say thatsthscripts of A is smaller than that of B if
subscripts(A) precedes subscripts(B) in lexicographic order. The notatisabscripts(A) for a given

set of states A is needed for defining a so-cattaximal set of pairwise-distinguishable states f(S)

for agiven state S for OPNFSMs. The states in a given set are pairwise-distinguishable if and onl
if every pair of states in the set are distinguishable. A maximal set of pairwise-distinguishable sta
is a set such that it is not contained in any other set of pairwise-distinguishable states. A maximal
of pairwise-distinguishable states if{$or a given state j$s the set with the smallest subscript
among the maximal sets of pairwise-distinguishable states that contaimsch is formally defined

as follows.

DEFINITION: Maximal set of pairwise-distinguishable states f(S) for a given state S:
Given an OPNFSM and a stai¢lISt, f(S) is defined as a set@St such that:
(i) SOA, and
(i) OSk,SOA (k# == S#Sj), and
(iii) there is no B=St such that
(iHi8B, and
(iN0Sk, §OB (k& === &), and
(iY\B] > |A| or

IB|=|A|, andsubscripts(B) precedes subscripts(A) in lexicographic orderl]

Given a minimal machine, for every state e have f(§=St. For a given OPNFSM, we denote

the number of all different maximal sets of pairwise-distinguishable stateziaess degree o, as

defined below.

DEFINITION: Fuzziness degree o for a given OPNFSM:
Given an OPNFSM, we haved = [{f(Sj) | sOst|. [
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According the above definition, every staidhn&s only one maximal set of pairwise-distinguishable
states f(§. Therefore, it is easy to see thatdx|St|, andd=1 for any minimal OPNFSM. A

fuzziness degre@&of a given OPNFSM influences the size of test suites and lengths of test cases.

DEFINITION : Prime machine:
For a given PNFSM S (St, Li, LoghSy), theprime machine of S is a reduced (not necessarily
minimal) OPNFSM M (S, Li, Lo, hy, Mg) such that M. []

We give in the following the test generation algorithm, which weHalinonized Sate Identification
method (HSI-method). This algorithm requires that the user previously estimategpenbound

on the number of states in the prime machine of the given NFSM implementation.

ALGORITHM 1. Test generatian

Input : A specification S in the form of an (arbitrary) OPNFSM (St, Li, Lo, ¢), 8nd the upper
bound m on the number of states in the prime machine of the given NFSM implementation.

Output : A test suitd].

Step 1: Determine the fuzziness degi@ef S.

Step 2: Let the number of states in S be gdm). Find a set of harmonized state identification
sets{ Do, Dy, ..., Dh-1} from S.

Step 3: Construct a minimal se©<Li* such that:0S0St [XOL* (xINOQ & Sp=x=>5).

Step 4. Construct a test suifg such that:

= [] {xin} .D; [}

S=x=>Si &
00, ({€} OLi...OLidM N+

In the above algorithm, the given specification is not required to be reduced. However, a mu

smaller test suite will be obtained if we use its reduced form.
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As an example, we derive a test s{ijidor the PNFSM given in Figure 1 as follows:

Q={e, a,ah, Di=Dy=Dz={a.l}, f(S)={S1,S3}, f(SH=f(S3)={S,.S3}, &=2.
Assume that the prime machines of implementations do not have more than 2 states (i.e., m=
then, we have gdm. We note that a test suite could be reduced by deleting each test case that i

prefix of another test case. The final test suite is as follows:

N ={a.a.ab, aab.ab, aa.c.ab, ab.aab, aca.ab, a.cb.ab, a.c.ca.b,
a.b.a.a.a.b, a.b.a.b.a.b, a.b.a.c.a.b, a.b.b.a.a.b, a.b.b.b.a.b, a.b.b.c.a.b,

a.b.c.a.a.b, a.b.c.b.a.b, ab.c.c.ab, a.caa.b, ab.b.ab, ab.c.aab} aa.a.ab

We note that a reset must be issued before the execution of each test case.

THEOREM 2: (Validity of the test generation method):

Consider a given specification S in the form of an OPNFSM, and any NFSM |. Supdnse n
where n is the number of states in S, and m is the upper bound on the number of states in the pi
machine of . Let[] be the test suite generated for S using Algorithm 1. We have the following:

(i) Squasl  iff  STl; (i) Stracd iff  S=pl.

Proof : (i) follows from Lemmas given in Appendix I. We omit the proof of (ii) since it is similar

to the proof for (i). [

As shown in Algorithm 1, test suites for minimal partial machines can be constructed in the sar
way as for completely specified minimal machines sidds equal to one for minimal machines.

However, if a partial machine has indistinguishable states, then the machine cannot be transforr
into its minimal form to generate test suite with respect to the quasi-equivalence relation. The rea:
is that the transformation of a partial machine into a minimal form by merging states will result in tk
appearance of new traces that are not defined in the original machine. In turn, this results in t

some valid implementations may not pass a test suite derived from the minimal form, and that so
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test cases in such a test suite may be not acceptable in the original machine. Therefore, pa

machines should not be transformed into minimal forms for test generation.

In practical application, state machines that represent implementations, are always complet
specified. Therefore, for a given OPNFSM specification S and a given tedf|sifitte complete-
testing assumption is satisfied by a given implementation NFSM |, then the relatig® ‘drd
"S<pl" can be checked by repeatedly applying every test case to | a sufficient number of time
Thus, according to Theorem 2, the test suites generated by Algorithm 1 can be used to test NF
implementations against their specification with respect to the quasi-equivalence or trace-inclusi

relations.

3.2. Equivalent transformation to obtain OPNFSMs

We now present an algorithm to construct an equivalent OPNFSM from a given PNFSN
Combined with this algorithm, the test generation method given in Section 3.1 can be used

generate test cases for an arbitrary PNFSM.

ALGORITHM 2: Constructing an equivalent OPNFSM.

Input : A PNFSM S.

Output : An OPNFSM S'.

Step 1. Build a graph G consisting initially of a single unmarked node, la&gd.

Step 2: If there is no unmarked node in the resulting graph G, then stop; G represents tl
OPNFSM S', and the nod&p} represents the initial state of S'. Otherwise,
(a) Find and mark an unmarked node M in G, where the labebtV
(b) For every UL, first construct M'{P'| POM (P=u=> P'}. Then, if M' is not a node

label in the resulting graph G, create an unmarked node with label M' and a directed ed

from M to M' with label u; go to Step L]
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The Figure 2 shows an example of using the above algorithm to construct an equivalent OPNF¢

from a given partial machine.

a/d
Li={a,b} b/d @
Lo={d, e} @ ble
the initial state is S( b/e
bid a/d (syy/bid

Figure 2. Transformation to obtain an equivalent OPN
3.3. Test generation for the Inres protocol

As an application example of using the HSI-method to generate test suites, we consider the In
protocol (Initiator-responder protocol) from [MUTE92] which has already been used as a referen:
in many publications. Under the ISO remote testing architecture, we construct a NFSM for tt
system under test which consists of a Responder and a User, as shown in Figure 3. An FSM m(
of the Responder can be easily constructed from the state tables [Kro092] and is not presente
this paper. The nondeterministic model shown in Figure 4 is assumed for the User. The user n
disconnect by sending IDISreq only in response to an ICONind or IDATind. We assume that the
is a certain control over the User's behavior in such a way that, during the test campaign, the U

executes each option sufficiently often.
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System under te

Usetr
ICONInd/ICONres}
* 4 ICONInd/IDISrec
Teste Responde IDATind/no outpu
IDATInd/IDISreq

v 4 L)

Medium Servici

Figure 3. Remote testing of Inres-respol Figure 4. User's behavi

The behavior of the system under test is described by the completely specified minimal ONFSM w

three states shown in Figure 5. Interpretation of inputs, outputs and states is given in Table 2.

cht
b/t
alu
alv
clw
S2

the initial state is S:

Figure 5. NFSM for the system under

Table 2. Interpretation of inputs, outputs and states

Inputs: Li = {a,b,g.
a-"CRPDU", b-"DT_1PDU", c-"DT_0PDU"

Outputs: Lo ={t,u,v,w,x,y,2.
t - "no output", u-"DR PDU", v-"CCPDU", w-"AK 0 PDU",
x - "AK_0 PDU followed by DR PDU", y - " AK_1 PDU",
z - "AK_1 PDU followed by DR PDU".

States: St ={S1,5,S3}.
$ - "disconnected” (initial state)pS "data transfer & dat_nr=1"3S "data transfer & dat_nr=0|.

We derive a test suifg as follows:
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0={¢, a,ah, D=D,=D3={b}, &=1
Assuming that a prime machine of any implementation does not have more than 3 states (i.e., m-

the final test suite if] ={a.a.b, a.b.a.b, a.b.b.b, a.b.c.b, a.c.b, b.g. cb

4, COMPARISON WITH OTHER RELATED WORK

Since FSMs, NFSMs and PFSMs are specific classes of PNFSMs, the HSI-method can be app
to them, to test the equivalence and quasi-equivalence relations, respectively (see Theorem 1).
compare in this section our HSI-method for PNFSMs with the other test generation methods f
different machines [Fuji91, Vuon89, Sabn8&it81, Chow78, Vasi73, Petr9l, Petr92, Trip92,

Kloo92 Luo89], which also require a "reliable” reset in the implementations (note, that simple
experiments or checking sequences do not use this assumption). The main advantage of the |
method over the other test generation methods is its broader applicability with full fault coverac

(w.r.t. conformance relations), as shown in Figure 6.

methods with full fault coverage

HSI-methoc

Petr9al

Vuon89(UIOv), Fuji9al(Wp),
Vasi73, Chow78(W), Petro92(F

Luo89, Trip92, Kloo9:| |Sabn85(UIO) | [Nait81(TT)

methods without full fault coverag

Figure 6. General comparison based on applicability and fault co

4.1. Pure FSMs
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When the HSI-method is applied to FSMs, the conformance relation to be checked is tt
equivalence, the same as in the W-method [Vasi73, Chow78], the Wp-method [Fuji91], the UIC
method [Sabn85], the UlOv-method [Vuon89], the FF-method [Petr92] and the TT-metho
(Transition tour) [Nait81]. The UIO-method does not guarantee full fault coverage, as it has be:
pointed out in [Vuon89]; neither does the TT-method. These methods have been justified |
simulation on the basis of percentage of fault coverage. UIOv- and FF- methods guarantee full fa
coverage (i.e., check equivalence) only if no malfunction causes an increase in the number of sta
Since the W-, Wp- and HSI- methods detect all faults that may even increase the state number u

the given bound, we need to compare our method with W- and Wp- methods only.

We first describe the W- and Wp- methods in our formalism. These methods assume tr
specifications are minimal (completely-specified) FSMs. We note that an FSM is minimal if an

only if it is reduced.

DEFINITION: Sateidentification sets {Wq, Wi, ..., Wh-1}:
Given an FSM{Wpg, W1, ..., Wh-1} is a tuple oftate identification sets if, for i=0, 1, ..., n-1,
Wi is a minimal set such that

for j=0, 1, ..., n-1( j#i == XOTr(S)BTr(S) (xrOW;) ). [

The test suite generated by the W-methodjg = [] {xin} .w
So=x=>Si &
xinOp.({e} OLi...OLiM™™

whereP= Q.({ €} OLi), andQ is constructed according to Step 3 of Algorithm 1.
The test suite generated by the Wp-method is
Mwp=M10M2 where W =WoOW10 ..OWp-1
Mi= [] {xin} W

So=x=>Si &
xin0Q.({ e} OLi...OLIM™™
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M2 = ] {xin}.W;
S=x=>Si &
xinOP\Q).({e} OLi...OLIM™
For reduced FSMs, sin@el, the test suite generated by the HSI-method is

|_| = D {Xin} 'Di
So=x=>Si &
xinop, ({g} OLi...OLi M)

We note that PEW , i=0,1,..., n-1, but WED;j. Therefore, neither the Wp-method nor the HSI-
method necessarily produces smaller test suites than the other. For a given a characterization se
there must be a set of harmonized state identification{€&§s D1, ..., Dh-1} such that P=W,
i=0,1,..., n-1. It is easy to s¢id| < |[Tw/; that is, the HSI-method produces usually smaller (but

never larger test suites) than the W-method.

4.2. Partial FSMs

Test generation for partial FSMs has received much less attention than that for completely-specif
FSMs. However, practical communication software is often modeled as partial machines. Sor
authors proposed to complete the "don't care" state/input combinations of partial machines
accordance with a so-calledmpleteness assumption [Sabn85, Vuon89]. The assumption states
that a machine should be constructed in such a way that, for every state/input combinati
representing "don't care", it producesul orerror output and either remains in tkame state or
goes into arerror state. However, in many cases, implementations are not constructed in the abo
way. Therefore, the completeness assumption is not always satisfied. Methods for test st
generation from a deterministic partial FSM were proposed in [Evtu89, Petr91]. The HSI-methc
combines the ideas of these methods with the concept of harmonized state identifiers, and furt

generalizes them to nondeterministic machines.

4.3. Nondeterministic FSMs
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When we consider completely specified, nondeterministic FSMs, the conformance relation to |
checked is the equivalence. In this context, some test generation methods for NFSMs based on L
sequences have been presented [Luo89, Trip92, Kloo92]. However, these methods can
guarantee full fault coverage (i.e., equivalence). The reason is the same as pointed out in [Voun:
Therefore, they have limited fault detection power. The main advantage of the HSI-method ov

these methods is that it guarantees full fault coverage.
5. CONCLUSION

We present in this paper a uniform method, called the HSI-method, for generating test suites fr
different types of state machines, ranging from pure FSMs to arbitrary partially-specified, eve
nonminimal, nondeterministic finite state machines. Unfortunately, if a given OPNFSM is no
minimal and its fuzziness degr@é&s more than one, then the lengths of test cases produced by th

HSI-method grow rapidly whediincreases.

a/0

alo b/O‘
b/l
bi0 : @nﬁ/o

S I
S1 and I1 are initial states of S and I, respectivt

Figure 7. An example of the worst ¢

Let n and m be the numbers of states in a specification and its implementation, respectively. In

extreme case, when=n, the length of a test case can reaein This upper bound holds even in
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the deterministic case. As shown in [Evtu89], for each pair n and m, there is a partial FSM with
states, for which the shortest test case has the lengttor its implementations with no more than
m states. Figure 7 gives an example of such machines, Wwharéor the PFSM S. Since

((a/0y-Lb/0Y"OTr(S) and ((a/0y1b/0Y"OTr(l), we have not(Syacd). It is easy to see that

(an-1.b)™ is the shortest test sequence of the lengthof for distinguishing the two machines.

In spite of this bound, the HSI-method yields much smaller test suites for states machines that

less fuzzy.As to the size of test suites produced by the HSI-method, its ordém3j.igpm-n+1),

This method can be applied to test generation for the control part of specifications written in SDL
ESTELLE. In such cases, we can first abstract SDL processes or ESTELLE modules to PNFS
by neglecting parameters; we then apply the test generation method for the resulting PNFSMs.
the situation of testing concurrent programs specified in SDL or ESTELLE, even though individu
processes are deterministic, the whole system usually is nondeterministic; therefore, there is a n
for methods to test nondeterministic machines. As far as implementation of test generation tools
concerned, the advantage of our method is that we need to implement only one test genera
method -- the HSI-method -- for PNFSMs, instead of implementing several individual methods f
FSMs, PFSMs and NFSMs since they are specific cases of partially-specified nondeterministic fin

state machines.

APPENDIX |:  VALIDITY OF TEST METHOD

For the convenience of presentation, we make several conventions and definitions; then we g
several lemmas which are required for proving the Theorem 2.

Given an OPNFSM S (§tLi, Lo, hs, ) and a NFSM | (StLi, Lo, hy, lg), we assume in the
following:
(1) S has n states withen?2.

(2) the fuzziness degree of Sis

(3) M (Sty, Li, Lo, hy, Mg) is the prime machine of I, and may have at most m state®mith.
4) S, S, & S, and M, Mj, Mk, M, represent the states of S and M, respectively.
(5) atuple of harmonized state identification sets offDig, Dy, ..., Dh-1} .
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(6) a minimal setQZLi* constructed from S such thdft§OSt [XOL* (xIN0OQ & Sg=x=>5).
(7) a test suit§] is constructed such that:
M= [] {xin} .Di=0Q.de} OLiO..O LidMn+Y&{ Dy, Dy, ..., Dh-1}
So=x=>Si &
\NOQ.({€} OLi...OLiOMN+])

where for VELi*, V @{Dg, Dy, ..., h.i}= [1 {xin}.D;.
So=x=>Si
& xingy

Definitions of several notations

notation meaning
[Si.Mi] -u-> [§,Mj] For UL, S-u->§ and Mu->M
[Si,Mi] =x=> [§,M;j] For XIL*, Si=x=>§ and NFx=>M,;
[Si,Mi]-after-V Given a pair of states,M5][IStsx Sty, and a set XZLi*

i®i]-after-V={[S;,M;] | IxOL* (xinOV &
i Mi] [&=> [§;,Mj])}

D D =[Sg, Mq]-after-L*
Dr DFZ{[Si,Mj] |[Si,Mj]DD& SiZDiMj}
Lik Lik={e} OLiO..0O Lik, when k1; andLiO={¢e}.

It is easy to seBrED and |Dr|g|D|gnxm. Since both S and M are observable, giveiM$ID

and XJL*, if there is a pair [§M;]0D such that [§Mj]=x=>[S;,Mi], then [§,M]] is the only pair
satisfying [$,Mi]=x=>[S;,Mj].

LEMMA 1. For VELi*, assume |[So,Mq]-after-V | =k .
If |D[>k, then |[Sp,Mq]-after-V.({€} O Li)|=k+1; and if| D[k, then

[8,Mq]-after-V.({e} O Li) = [So,M]-after-V.
Proof:
(I) To prove that the lemma holds wh¢D|>k.

The lemma holds whefSp,Mg]-after-V|>k . Now consider the case thfig,Mo]-after-V [=k.

statements reasons
(1) |D|>k hypothesis
(2) [[So,Mq]-after-V | =k hypothesis
3) [9.Mq]-after-VE D definitiomof
4) [0S, Mi]OD\[So,Mg]-after-V 1) & (2) & (3)

(5) [ISk-1,Mk-1] U[So,M(]-after-V
[1Sk,Mk],[Si,Mi]OD\[So,M¢]-after-V
[LOL [x,yOL* such that: xin(OV &
([3,Mo]=Xx=>[Sk-1,Mk-1]-U->[Sk,Mi]=y=>[S;,Mi] (4)
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6)  SMO(So,Mol-after-V.({€} O Li)\[So,Mo]-after-V (5)

(@)  |iSo.Mql-after-V.({€} O Li)| 2k+1 (6)

(Il) To prove that the lemma holds whe|<k.

(1) |D|=sk hypothesis
(2) [[So.M(]-after-V | =k hypothesis
@)  [$Md-after-VE D definitiomof
@)  [$Mg-after-V.({€} O Li) = [So,Mo]-after-V 1) & (2) &3

LEMMA 2: Assume §=gMo. If | D|>dxm, then|[So,Mq]-after-Q.LidM-N| 25xm;
and|i’|<dxm, then [9,Mg]-after-Q.Lidm-n= D,

Proof:

Sincedm=n, LidM-N s always defined.

(I) To prove that the lemma holds whigb|>3xm.

(1) S=oMo hypothesis

(2) | D|>8xm hypothesis

(3) [[So,Mq]-after-Q| =n S is initially-connected & (1)
(4) [[So,Mq]-after-Q.LidM-n| >&xm (2) & (3) & apply Lemmadtm-n times

(I) It is evident from Lemma 1 that the lemma also holds wigjgd=m.. ]

LEMMA 3: If Sj=pj Mk, then 8§ == not( $=pjMk )
Proof:
(0)  for V= Li*, Sj=v Mk iff Si=prerrv) Mk evident
(1) S=pi Mk hypothesis
(2) $ES hypothesis
©)) 5Dj Mk assumption
4) S pref(Di) Mk 0)&(1)
() Bpref(Dj) Mk (0) & (3)
(6) XOTr(S)BTr(S) (xnOpref(Dj) n pref(Dj)) definition of (& (2)
(7) let x be a sequence such that
XTr(S)® Tr(S)(x"Opref(Dj) n pref(D;))
in the following making a definition based on (6]
(8) KTr(S)\Tr(§) or XATr(S\Tr(S) (7
9) ROTrin(Mg) The NFSM M is completely specified
(20) KTr(S)\Tr(S) (4) & (B) & (7) & (9)
(12) KTr(§N\Tr(S) (4) & (B) & (7) & (9)
(12) (8) is not true (10) & (11)
(13) not( $-pj Mk ) (3) causes the contradiction between (8) ar_1(12).

LEMMA 4: For SOSts, |{[Sk,Mk]| [Sk,Mk]ODr & SkDf(Si)}| <m
Proof:
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Let Di ={[Sk.MK]| [Sk,Mk]ODr & Skf(Si)} .

(1) |Stu]=m hypothesis
(2) |Di| >m assumption
(3) LS, Mk],[S1,Mk]UD; ( j#] & Sj=pjMk & Si=pIMk ) 1) &(2)
4) (3) Is not true Lemma 3
(5) |Di]sm (2) causes the contradiction between (3) &_H (4).
LEMMA 5: | Dr|< dxm.
Proof:
Let E ={f(Sj) | SOSts}, and Dj = {[Sk,M«]| [Sk,Mk]ODr & SkOf(S;)} .
(1) o=[g]| definion of
2 bre [ Dby definition of Dr
f(Si)OE
()  DOf(S)OE (IDjlc m) Lemma 4
@ |brs 2[5 (2)
f(Si)OE
(5) |Dr[=d&xm (1) & (3) & h).
LEMMA 6: If SO:(Q.[i5m'”)D{Do lllll - ]}Mo, then [B,Mg]-after-Q.Lidm-n =D,
Proof:
When| D| < &*m, the lemma is evident from Lemma 2. Now consider the casgihatdxm.
1) So L™ Moo, Dn-]}MO hypothesis
) | D| > &xm hypothesis
(3) | [So,M]-after-Q.LidM-n | >5xm (2) & Lemma 2
(4) [$,Mo]-after-O.Lidm-nC Dr 1)
(5) | [So,Mq]-after-Q.LidM-n| < | Dr| < &xm (4) & Lemma 5
(6) | [So,Mgl-after-Q.LidM-n | = | Dr| = &xm (3) & (5)
7) [8,Mg]-after-Q.LidM-n= Dr 4) & (L]
LEMMA 7. If Sg=nMo, then [9,M]-after-Q.LidM-n+1=Dr = D.

Proof:
When|D| < 8%m, the lemma is evident from Lemma 2. Now we argue|tbht 5xm does not

hold if Sp= OLO™ o0 o ]}Mo holds. |

(1) So= g pom-n+1 o 5 Mo hypothesis
(2) | D| > &xm assumption
(3) | [So,Mq]-after-Q.LidM-n+1| >gxm+1 (2) & Lemma 2
4) [, Mq]-after-Q.LidM-n+1Z Dr 1)

5) | [So,Mq]-after-Q.LidM-n+1| < | Dr| < &*m (4) & Lemma 5

(6) |D|<d%m (2) causes the contradiction between (3)[hd (5.
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LEMMA 8: If Sp=pjMo, then
[S,Mo]-after-Q.LidM-N = [Sy,Mg]-after-Q.LidM-n+1=Dr = D.
Proof: Sp=pMg implies SO:(Q.Eiém_n)D{Do ..... Dn_]_}MO' Then, because ofpSyMo and

SOZ(Q.[iém-n)D{DO ..... Dn-1}MO’ the lemma follows Lemmas 6 and[_]

LEMMA 9: If Sp=nMo, then $<quasMo.
Pr oof:

(1) To show Tr(Sg) &S Tr(Mg).
(1) S=pMo hypothesis
(2) DxOL*( if xInOQ.LidM-N and [Q,Mo]=x=>[Sj,Mj],

then (i) j(#;] is unique, and

(iallLi (Sj=3 Mj) ) (1) & Lemma 8 &
"S, M are observable"
3) notTr(So) S Tr(Mg) ) assumption
4) OyOL* DuOL OS;,Mi]0Dr such that 0 Q.LidM-N &
[BMol=y=>[Sj,M|] & Sj-u-> & Mj\-u-> (3) & (1) & Lemma 8 &
"S, M are observable'
(5) Tr(Sp=Tr(Mg) (3) causes the contradiction between (2) and (4)
(I) To show O xOTr(Mg) ( xPOTrin(Sp) === xOTr(So) )
(1) S=pMo hypothesis

(2) DOxOL*( if xInOQ.LidM-N and [@,Mo]=x=>[Sj,Mj],
then (i) [#] is unique, and

(iPadLi (Sj=@ Mj) ) (1) &Lemma 8 &
"S, M are observable'
(3) not{ yOTr(Mo) ( yinOTrin(Sp) === yOTr(Sy) ) ) assumption
(4) CWOTr(Mg) (WnOTrin(So) & wTr(Sg) ) 3)
(5) [z0L* CuOL 0S;,M;]0Dr such that 200.L3MN &
[8.Mo]=z=>[S,Mi] & S;\-u-> & unOTrin(S) & Mj-u-> (4) & (2) & Lemma 8

(6) O xOTr(Mg) ( XnOTrin(Sy) === xUTr(Sg) )
(3) causes the contradiction between (2]_Ind (5).
LEMMA 10: S=pMo  iff  S=qlo.
Proof: Since b=pMg and since both | and M are completely specifiegi®o implies =plo.
By the same reason,oSlo implies $=pMo. [

We note that Lemmas 9 and 10 lead Theorem 2(i). The proof for Theorem 2(ii) is similar to that fi
Theorem 2(i).

APPENDIX Il: GENERATION OF CHARACTERIZATION SET AND
HARMONIZED STATE IDENTIFICATION SETS

DEFINITION: operatorspartition andrefine :
For xL*, Clas<Ipowerset(St), Class@powerset(powerset(St)), we define



19/10/1994 Page 31

(1) partition is a function: L*x powerset(St) --> powerset(powerset(St))
xpartition Class A, B} where A and B are decided as follows:
A={P| POClass & (XJTr(P) or »nOTrin(P)}
B={ P| POClass & (OTr(P)}
(2) refine is a function: L* powerset(powerset(St)) --> powerset(powerset(St))

x refine Classes = [ ] x partition Clas:

Clasg]Classes

[

ALGORITHM : Characterization set generation .
Input : An OPNFSM (St, Li, Lo, h, § with n states.

Output : a characterization set.W
variables Class: powerset(St);
Classes: powerset(powerset(St));
K: integer;
X L*
V: powerset(L*)
W: powerset(Li*)

Step 1. Classes:£St}; k:=0; W:=J; V:=[. 0"is an empty set"
Step 2. REPEAT
FOR ALL x (x|=k & xOL*) DO1 x| is the length of x"

IF |x refine Classel>|Classep THEN
DO2 Classes:=refine Classes; V:=M{x} ENDDO2 ENDIF;
IF OClas$IClassedClas§=1) THEN GOTO Step 3 ENDIF
ENDDO1,;
K:=k+1
ENDREPEAT UNTIL k=(n-1)/2;
Step 31 W:=vin, [

Given an OPNFSM (St, Li, Lo, hgp for any pair of distinguishable states, there must bhéd & t
of a length not more than(n-1)/2 such that t distinguishes them [Star72]. Therefore, there must be

a characterization set W such thiatOW (|x|gn(n-1)/2). For a completely specified minimal
machines, the above algorithm terminates before k=n.

ALGORITHM : Generation of harmonized state identification sets.
Input : An OPNFSM (St, Li, Lo, h, @, a characterization set W.
Output : Harmonized state identification s¢®g, Dy, ..., Dh-1} .
variables i, j: integer;

X: L*

Do, Dy, ..., Dh-1: powerset(Li*)
Step 1: Let i:=0. Choose a minimal psuch that

(i) DoSpref(W)nTrin(Sp), and

(i) for j=1, ..., n-1, (if $&So, IXOTr(Se)BTr(S)) (XnODoNTrin(g) ) ).
Step 2. If i=n-1, stop. Otherwise, let i:=i+1, and choose a minimauzh that
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(i) DiSpref(W)nTrin(S), and
i)y for j=0, 1, ..., i-1, ( if SkS, IXOTr(S)BTr(S) (xnDpref(D)npref(D)) ) ), and
(iii) for j=i+1, ..., n-1, (if S%S;,
XOTr(S)BTr(S) (xinDDmTri“(ﬁ) )).
Go to Step 11
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APPENDIX IIl: PROPERTIES OF THE CONFORMANCE RELATIONS

LEMMA: Given three states S, P, and |, igf P and FKefl, then Syefl; that is,<ref is
transitive.
Proof:

Part I: It is evident thalr(S)=Tr(l) from the hypothesis.
Part II: To proved xOTr(l) ( xnOTrin(S) === xOTr(S) )

Q) S<etP hypothesis
(2) Pyeg! hypothesis
3) Xte(¢h hypothesis
4) xTreP (2) & (3)
(5) ndTringsy hypothesis
(6) oxr(sy L. (1) & (4) & (5)
(7 xnOTrin(S) ==+ xOTr (<) .. (5) & (6)F=."
(8) OxOTr(l) (xinOTrin(S) ==+ xOTr(S) ) .. (3) & (7) &I+ "

The lemma holds from Parts | and Il.
[End of proof]

ALGORITHM : Sate identification set generation .
Input : A PNFSM (St, Li, Lo, h,§, a given state P
Output : A state identification set ID for.P
variables Class: powerset(St);

Classes: powerset(powerset(St));

K: integer;

X L*

ID: powerset(L*)
Method:
Step 1: Classes:£St}; k:=1; ID:=o.
Step 22 REPEAT

FOR ALL x (x|=k & OL*) DO1
IF [(Clas$IClasses{(P} (Class &]x partition Clas$>1) THEN
DO2 Classes:#efine Classes; ID:=1D{x} ENDDO2 ENDIF;

IF OClass$IClasses{(P} OClass==% |Clas§ =1) THEN STOP ENDIF
ENDDO1; K:=K+1
ENDREPEAT;
[End of algorithm].

DEFINITION : Product graph G:
A product graph is a directed graplis such that:

(i) The graphG has| D | nodes. Each node is labeled a pair <Si,Mi>Din Different nodes have
different labels.
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(i) For each pair of nodes <Si,Mi> and <Sj,Mj>, there is a directed edge from <Si,Mi> to <Sj,Mj>
with a label u if and only if <Si,Mi> -u-> <Sj,Mj>.
[End of definition].

DEFINITION: Unique state identification sets { W0, Wi, ...... , Wa-1}:
Given an OPNFSM and a set of harmonized unique state identificatidDggtB1, ...... , D1},
a set ofunique state identification sets  is a set of sefswi | SiOSt & WI€Di} such that :
osiost (g ==
if Siis distinguishable from Sj,
then IXOWi ( XnOTrin(Si)n Trin(Sj) & xOTr(Si)EBTr(Sj) ) .
[End of definition].
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